Purification of Ethylene Dichloride

Total Page:16

File Type:pdf, Size:1020Kb

Purification of Ethylene Dichloride Patentamt àJEuropâisches European Patent Office (jj) Publication number: 0 007 064 Office européen des brevets Bl @ EUROPEAN PATENT SPECIFICATION @ Dateof publication of patent spécification: 19.01.83 @ Int. Cl.3: C 07 C 17/38, C 07 C 1 9/045 @ Application number: 79102263.5 @ Date offiling: 04.07.79 (54) Purification of ethylene dichloride. (30) Priority: 07.07.78 US 922717 @ Proprietor: PPG INDUSTRIES, INC. One Gateway Center Pittsburgh Pennsylvania 1 5222 (US) (43) Date of publication of application: 23.01.80 Bulletin 80/2 @ Inventor: Walker, Henry Rideout 922 Wilshire (45) Publication of the grant of the patent: Corpus Christi, Texas 7841 1 (US) 19.01.83 Bulletin 83/3 (74) Representative: Hann, Michael, Dr. (84) Designated Contracting States: Marburger Strasse 38 BE DE FR GB IT NL SE D-6300 Giessen (DE) (56) References cited: DE - B - 1 468 480 DE-B - 1 793 051 DE - B - 2 603 477 US -A- 3 691 239 US -A- 3 996 300 US-A-4020117 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1 ) European patent convention). Courier Press, Leamington Spa, England. Background of the invention of said product is reduced by contacting it with Ethylene dichloride (1,2-dichloroethane) is alumina, said process being characterized in typically produced by catalytic vapor phase oxy- that the chloral containing reaction product is chlorination of ethylene wherein a gaseous contacted with alumina by passing a gaseous mixture of ethylene, hydrogen chloride, and stream of said reaction product through a fixed oxygen are reacted in the presence of a Deacon- bed of alumina at a temperature of from 200°C type catalyst, e.g., copper halide catalyst. The to 300°C, said alumina having a Brunauer, oxychlorination product gas stream is Emmet and Teller surface area of from 30 to condensed to form organic and aqueous acidic 600 square meters per gram, the volume of said liquid phases. The organic phase containing alumina bed being from 10 to 60 percent of the crude ethylene dichloride is further purified by, volume of the oxychlorination catalyst, con- for example, distillation and the aqueous acidic densing said stream and recovering ethylene di- phase is discharged to waste. chloride from te condensation product. Although satisfactorily high yields of ethylene The determination of the Brunauer, Emmet dichloride may be obtained by the vapor phase and Teller ("BET") surface is described in J. Am. oxychlorination of ethylene, both the organic Chem. Soc. Vol. 60, pp. 30 et seq. (1938). A and aqueous phases typically contain preferred range of the BET surface area of objectionable amounts of chloral, i.e., from alumina is from 100 to 300 square meters per about 0.2 to 0.5 percent by weight, in the gram. The volume of the alumina is preferably organic phase and in excess of 2 percent by from 10 percent to 30 percent of the volume of weight in the aqueous phase. the oxychlorination catalyst. Since chloral is classified as a pollutant, it A higher relative volume of alumina to oxy- must be substantially removed from the chlorination catalyst is used when the alumina aqueous phase prior to discharge to waste and has a low BET surface area and conversely a also must be removed from the organic phase in lower relative volume of alumina to oxy- order to produce high purity ethylene dichloride. chlorination catalyst is used when the alumina One means of removing chloral from the has a high BET surface area. condensed oxychlorinated product stream is Care should be taken that neither too much disclosed in U.S. Patent No. 3,378,597 wherein nor too little alumina be used. The use of too aqueous sodium hydroxide is used to much alumina will result in an overly long decompose chloral to chloroform and sodium contact time with the oxychlorination product formate. However, both chloroform and sodium stream which tends to decompose not only formate also pose a waste disposal problem and chloral but also ethylene dichloride product. require additional treatment, e.g., bioxidation or Conversely with the use of too little alumina the like, before being discharged to a receiving there will be insufficient contact time with the stream. oxychlorination product stream resulting in DE-B2-1 793 051 shows a process for incomplete decomposition of chloral. recovering the reaction mixtures obtained in the The optimum volume ratio of alumina having preparation of ethylene dichloride by vapor a particular BET surface area to oxychlorination phase oxychlorination of ethylene. The reaction catalyst for a given system may, however, be product is first condensed to separate ethylene readily determined without excessive experi- dichloride and water in the liquid phase. The mentation simply by varying the volume of remaining gas stream which comprises alumina to oxychlorination catalyst within the excessive ethylene is reacted with chlorine in above specified limits bearing in mind that the the presence of alumina in order to form higher the BET surface area of the alumina, the ethylene dichloride. In this process chloral is not lower the relative volume of alumina based on removed from the major part of the reaction the volume of oxychlorination catalyst. product which is condensed immediately after The temperature of the alumina bed is main- the oxychlorination. tained at from 200°C to 300°C, preferably from It is desirable, therefore, to provide means for 240°C to 260°C, and, in order to obtain satis- removing chloral prior to condensing the factory decomposition of chloral, the oxy- gaseous oxychlorination product stream which chlorination product stream should contain from would preclude further treatment of any phase 1 to 5 percent by volume oxygen. to remove chloral therefrom. In a typical practice of the invention, In accordance with this invention a process ethylene, hydrogen chloride, and oxygen gases has been found of preparing ethylene dichloride are fed in known fashion to a fluid reactor con- by vapor phase oxychlorination of ethylene taining an oxychlorination catalyst at a rate suf- wherein a gaseous mixture of ethylene, ficient to maintain the catalyst bed in a fluidized hydrogen chloride, and oxygen are contacted at condition without significant entrainment of an elevated temperature with an .oxy- catalyst particles in the product gas stream and chlorination catalyst to produce a chloral con- to intimately contact the gaseous reactants with taining reaction product and the chloral content the fluidized catalyst. Of course, the vapor phase oxychlorination of ethylene to ethylene di- weight percent potassium, and 9.0 weight chloride may be conducted using a fixed or percent chloride; had a BET surface area of static catalyst bed rather than a fluidized about 37 square meters per gram; and had a catalyst. Particle size of the oxychlorination bulk density of about 39.4 pounds per cubic catalyst is not particularly critical, although for foot. fluid bed operation catalyst particle size is typically in the range of 0.076 to 0.500 mm, preferably between 0.152 to 0.388 mm. The Example 2 reaction may be conducted over a wide range of A tube from a corrosion resistant alloy (79 temperature, for example, between 150°C to percent Ni, 14 percent Cr, 7 percent Fe) 1,5 m 500°C, preferably between 250°C and 350°C. in height and 5 cms in diameter was employed Contact time between the gaseous reactants is as a fluid bed oxychlorination reactor. The typically not more than about 30 seconds and reactor was enclosed in a 6 inch diameter steel usually about 10 seconds. Depending on jacket forming an annular heat exchange reaction conditions and catalyst selection, system. "Dow Therm E" (a diphenyl-diphenyl- conversion of ethylene to ethylene dichloride oxide eutectic sold by The Dow Chemical Co.) usually ranges from about 70 percent to sub- was circulated in the annular space formed stantially quantitative and ethylene dichloride between the jacket and the outer surface of the crude having an ethylene dichloride content of reactor to control the fluid bed temperature. from 97 percent to 99 percent may be obtained. A 1 liter capacity glass secondary reactor The product gas stream from the oxy- was connected to the oxychlorination reactor chlorination reactor is passed through a vent with a glass-crossover. Both the secondary secondary reactor containing a fixed or static reactor and the crossover were wrapped with bed of particulate alumina maintained at a tem- insulation and externally controlled heating perature of from 200°C to 300°C, the volume tape. The outlet of the secondary reactor was of alumina being proportioned to the volume of connected to a condenser system. oxychlorination catalyst in the fluid reactor as The oxychlorination reactor was charged to a described hereinabove. depth of 63.5 cms with the catalyst prepared in It is, of course, to be understood that rather Example 1 and the secondary reactor was than employing a single alumina containing charged with alumina. Two types of commer- reactor, two or more such reactors connected in cially available alumina were tested, i.e., series may be employed. Aluminum Company of America F-1 grade The gaseous stream, after passage through alumina screened to 0.388 mm (+40 mesh) the alumina bed, is condensed in known fashion having a BET surface area of 300 ml/g (Type A) to form organic and aqueous liquid phases. The and Norton Co.
Recommended publications
  • Ethylene Dichloride (Edc) Handbook
    ETHYLENE DICHLORIDE (EDC) HANDBOOK OXYCHEM TECHNICAL INFORMATION 11/2014 Dallas-based Occidental Chemical Corporation is a leading North American manufacturer of basic chemicals, vinyls and performance chemicals directly and through various affiliates (collectively, OxyChem). OxyChem is also North America's largest producer of sodium chlorite. As a Responsible Care® company, OxyChem's global commitment to safety and the environment goes well beyond compliance. OxyChem's Health, Environment and Safety philosophy is a positive motivational force for our employees, and helps create a strong culture for protecting human health and the environment. Our risk management programs and methods have been, and continue to be, recognized as some of the industry's best. OxyChem offers an effective combination of industry expertise, experience, on line business tools, quality products and exceptional customer service. As a member of the Occidental Petroleum Corporation family, OxyChem represents a rich history of experience, top-notch business acumen, and sound, ethical business practices. 1 Table of Contents Page Introduction to Ethylene Dichloride ............................................................................................................ 3 Manufacturing .................................................................................................................................................. 3 Ethylene Dichloride (EDC) — Uses ................................................................................................................
    [Show full text]
  • Toxicological Profile for Ethylbenzene
    ETHYLBENZENE 151 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION Ethylbenzene is primarily produced by the alkylation of benzene with ethylene in liquid-phase slurry reactors promoted with aluminum chloride catalysts or by vapor-phase reaction of benzene with dilute ethylene-containing feedstock with a boron trifluoride catalyst supported on alumina (Cannella 2007; Clayton and Clayton 1981; HSDB 2009; Welch et al. 2005; Ransley 1984). Newer versions of the method employ synthetic zeolites in fixed-bed reactors as catalysts for alkylation in the liquid phase or narrow pore synthetic zeolites in fixed-bed reactors in the vapor phase (Welch et al. 2005). Other methods of manufacturing ethylbenzene include preparation from acetophenone, dehydrogenation of naphthenes, catalytic cyclization and aromatization, separation from mixed xylenes via fractionation, reaction of ethylmagnesium bromide and chlorobenzene, extraction from coal oil, and recovery from benzene-toluene-xylene (BTX) processing(Clayton and Clayton 1981; HSDB 2009; Ransley 1984; Welch et al. 2005). Commercial grades of ethylbenzene may contain small amounts of m-xylene, p-xylene, cumene, and toluene (HSDB 2009). Ethylbenzene is traditionally ranked as one of the top 50 chemicals produced in the United States. Table 5-1 shows the historical production volumes of ethylbenzene from 1983 to 2005 (C&EN 1994a, 1994b, 1995, 2006; Kirschner 1995). Table 5-2 lists the facilities in each state that manufacture or process ethylbenzene, the intended use, and the range of maximum amounts of ethylbenzene that are stored on site. There are currently 3,755 facilities that produce, process, or use ethylbenzene in the United States. The data listed in Table 5-2 are derived from the Toxics Release Inventory (TRI06 2008).
    [Show full text]
  • ETHYLENE from METHANE (January 1994)
    Abstract Process Economics Program Report No. 208 ETHYLENE FROM METHANE (January 1994) This report evaluates two routes for the production of ethylene from methane: the direct synthesis based on the oxidative coupling of methane, and the less direct chemistry of converting methanol (which is derived from methane via synthesis gas) in the presence of an aluminophosphate molecular sieve catalyst. Our evaluations indicate that at the present state of development, the economics of both routes are unattractive when compared with the steam pyrolysis of hydrocarbons. We analyze the results of our evaluations to define the technical targets that must be attained for success. We also present a comprehensive technical review that examines not only the two routes evaluated, but also some of the more promising alternative approaches, such as synthesis gas conversion via a modified Fischer-Tropsch process, ethanol synthesis by the homologation of methanol, and ethylene production via methyl chloride. This report will be of interest to petrochemical companies that produce or consume ethylene and to energy-based companies (or equivalent government organizations in various countries) that have access to or control large resources of methane-rich natural gas. PEP’91 SCN CONTENTS 1 INTRODUCTION 1-1 2 SUMMARY 2-1 TECHNICAL REVIEW 2-1 Oxidative Coupling 2-1 Methanol Conversion to Ethylene 2-3 Modified Fischer-Tropsch (FT) Process 2-3 Methanol Homologation 2-3 Conversion via Methyl Chloride 2-4 SRI’S PROCESS CONCEPTS 2-4 Ethylene from Methane by Oxidative
    [Show full text]
  • Hydrogenation of Ethylene on Metallic Catalysts
    S ro Hating Bure* M “"“^ piu&« Ubwu, Ml ®min’ JUN 2 1 1S68 A 1 1 1 2 mbESD NATX INST OF STANDARDS & TECH R.I.C. NSRDS-NBS 13 NSRDS 11 021 46250 ™SRDS.NB^ QC100 -U573 V13;1968 C.1 sH *- NBS-PUB-C 1964 ^f#Cf DftU NBS 'USUCATfONS Hydrogenation of Ethylene Metallic Catalysts U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS National Standard Reference Data Series National Bureau of Standards National Standard Reference Data System, Plan of Operation, NSRDS-NBS 1 — 15 cents* Thermal Properties of Aqueous Uni-univalent Electrolytes NSRDS-NBS 2 — 45 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si II, Si ill, Si iv, NSRDS-NBS 3, Section 1—35 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si I NSRDS — NBS 3, Section 2 — 20 cents* Atomic Transition Probabilities, Volume I, Hydrogen Through Neon, NSRDS-NBS 4 — $2.50* The Band Spectrum of Carbon Monoxide, NSRDS-NBS 5 — 70 cents* Tables of Molecular Vibrational Frequencies. Part 1, NSRDS-NBS 6 — 40 cents* High Temperature Properties and Decomposition of Inorganic Salts. Part 1. Sulfates, NSRDS-NBS 7-35 cents* Thermal Conductivity of Selected Materials, NSRDS-NBS 8 — $1.00* Tables of Biomolecular Gas Reactions, NSRDS-NBS 9 — $2.00* Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, NSRDS- NBS 10 — 40 cents* Tables of Molecular Vibrational Frequencies, Part 2, NSRDS-NBS 11 — 30 cents* Tables for the Rigid Asymmetric Rotor: Transformation Coefficient from Symmetric to Asymmetric Bases Expectation Values of P\ and 4 NSRDS-NBS 12 — in press.
    [Show full text]
  • Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts
    Catalysis Letters Vol. 108, Nos. 3–4, May 2006 (Ó 2006) 159 DOI: 10.1007/s10562-006-0041-y Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts N.A. Khan,* S. Shaikhutdinov, and H.-J. Freund Department of Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany Received 20 December 2005; accepted 20 January 2006 Adsorption and co-adsorption of ethylene, acetylene and hydrogen on Pd-Ag particles, supported on thin alumina films, have been studied by temperature programmed desorption (TPD). The TPD results show that adding of Ag to Pd suppresses overall hydrogenation activity but increases selectivity towards ethylene, i.e. similar to that observed on real catalysts. The results are rationalized on the basis of a complex interplay between surface and subsurface hydrogen species available in the system, whereby the latter species are the most critical for total hydrogenation of acetylene to ethane. KEY WORDS: hydrogenation; bimetallic catalysts; acetylene; palladium; silver. The selective hydrogenation of acetylene is an alumina film both at low pressures (with TPD) and high industrially important catalytic process in the large-scale pressures (up to 1 bar, using gas chromatography [16– production of polyethylene, where a small quantity of 18]. Under both conditions, the ethylene hydrogenation acetylene (<3%) is present in ethylene feedstock. reaction was found to be structure insensitive. In Commercially, it is preferred to reduce the acetylene contrast, hydrogenation of 2-pentenes exhibited a sig- content to less than 10 ppm, which needs 99% acet- nificant particle size effect [19]. These studies have ylene conversion in the excess of ethylene [1].
    [Show full text]
  • Kinetic Study of the Selective Hydrogenation of Acetylene Over Supported Palladium Under Tail-End Conditions
    catalysts Article Kinetic Study of the Selective Hydrogenation of Acetylene over Supported Palladium under Tail-End Conditions Caroline Urmès 1,2, Jean-Marc Schweitzer 2, Amandine Cabiac 2 and Yves Schuurman 1,* 1 IRCELYON CNRS, UMR 5256, Univ Lyon, Université Claude Bernard Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France; [email protected] 2 IFP Energies nouvelles, Etablissement de Lyon, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France; [email protected] (J.-M.S.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +33-472445482 Received: 9 January 2019; Accepted: 31 January 2019; Published: 14 February 2019 Abstract: The kinetics of the selective hydrogenation of acetylene in the presence of an excess of ethylene has been studied over a 0.05 wt. % Pd/α-Al2O3 catalyst. The experimental reaction conditions were chosen to operate under intrinsic kinetic conditions, free from heat and mass transfer limitations. The data could be described adequately by a Langmuir–Hinshelwood rate-equation based on a series of sequential hydrogen additions according to the Horiuti–Polanyi mechanism. The mechanism involves a single active site on which both the conversion of acetylene and ethylene take place. Keywords: power-law; Langmuir–Hinshelwood; kinetic modeling; Pd/α-Al2O3 1. Introduction Ethylene is the largest of the basic chemical building blocks with a global market estimated at more than 140 million tons per year with an increasing growth rate. It is used mainly as precursor for polymers production, for instance polyethylene, vinyl chloride, ethylbenzene, or even ethylene oxide synthesis.
    [Show full text]
  • Acetone Sorption and Uptake Kinetic in Poly(Ethylene Terephthalate) C.C
    JPOL 3249 Polymer 40 (1999) 3487–3499 Acetone sorption and uptake kinetic in poly(ethylene terephthalate) C.C. McDowella,*, B.D. Freemana, G.W. McNeelyb aDepartment of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA bHoechst-Celanese Corporation, Spartanburg, SC, USA Received 11 March 1998; received in revised form 8 May 1998; accepted 18 May 1998 Abstract The sorption and kinetics of acetone uptake in solvent cast films of poly(ethylene terephthalate) are reported at 35ЊC for acetone pressures ranging from 0 to 7.3 cm Hg. The equilibrium sorption isotherm is well described by the dual-mode sorption model with the following 3 3 Ј : 3( )= 3 ¹1 parameters: k D ¼ 61 cm (STP)/(cm ·atm), CH ¼ 7 2cm STP cm , and b ¼ 50 atm . Sorption kinetics are described using a two-stage model which incorporates both Fickian diffusion and protracted polymer structural relaxation. The characteristic time associated with the relaxation process is essentially independent of acetone concentration and has an average value of approximately 15 hours. The fraction of sorption associated with polymer relaxation increases linearly with acetone concentration in the equilibrium-densified matrix of the polymer. Acetone diffusion coefficients increase with increasing acetone concentration. The concentration dependence of the acetone diffusion coefficient is well described by the dual-mobility model if the assumption of constant diffusion coefficients in the two modes is relaxed. ᭧ 1999 Elsevier Science Ltd. All rights reserved. Keywords: Sorption; Diffusion; Acetone 1. Introduction sorption model [7]. Liu and Neogi measured methylene chloride vapor sorption kinetics in PET over a wide range Poly(ethylene therephthalate) [PET] is an important of penetrant activity and observed Fickian mass uptake barrier material that is widely used to package foods and kinetics [8].
    [Show full text]
  • Decarbonization of Industrial Sectors: the Next Frontier
    Decarbonization of industrial sectors: the next frontier June 2018 Decarbonization of industrial sectors: the next frontier June 2018 Authored by: Arnout de Pee Dickon Pinner Occo Roelofsen Ken Somers Eveline Speelman Maaike Witteveen Preface The industrial sector is a vital source of wealth, prosperity, and social value on a global scale. Industrial companies produce about one-quarter of global GDP and employment, and make materials and goods that are integral to our daily lives, such as fertilizer to feed the growing global population, steel and plastics for the cars we drive, and cement for the buildings we live and work in. Industry also emits about 28 percent of global greenhouse gas (GHG) emissions, of which 90 percent are carbon dioxide (CO2) emissions. Between 1990 and 2014, GHG emissions from major sectors such as buildings, power, and transport increased by 23 percent (0.9 percent per year), while emissions from the industrial sector increased by 69 percent (2.2 percent per year). Over the last decades, the outlines of energy transition pathways have emerged in the buildings, power and transport sectors. These have been driven by technological breakthroughs and cost reduction. For industrial processes, such pathways are less well-defined. The energy transition in industry should be viewed in the context of global trends that will impact the demand for and preferred production routes of industrial products. There is an expected growth in resource demand, driven by an increase in middle class consumers of ~3 billion in the coming 20 years, as well as rapid urbanization. This coincides with growing constraints on key resources, such as copper and zinc, and environmental degradation, for instance from air pollution.
    [Show full text]
  • Ethene, Propene, Butene and Isoprene Emissions from a Ponderosa Pine Forest Measured by Relaxed Eddy Accumulation
    Atmos. Chem. Phys., 17, 13417–13438, 2017 https://doi.org/10.5194/acp-17-13417-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation Robert C. Rhew1, Malte Julian Deventer1,*, Andrew A. Turnipseed2,*, Carsten Warneke3,4, John Ortega5, Steve Shen1, Luis Martinez6, Abigail Koss3,4, Brian M. Lerner3,4,a, Jessica B. Gilman3,4, James N. Smith5,b, Alex B. Guenther7, and Joost A. de Gouw3 1Department of Geography and Berkeley Atmospheric Sciences Center, University of California Berkeley, Berkeley, CA 94720-4740, USA 22B Technologies, Boulder CO 80301, USA 3Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder CO 80309, USA 4NOAA Earth System Research Laboratory, Boulder, CO 80305, USA 5Atmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research, Boulder, CO 80301, USA 6Ernest F. Hollings Undergraduate Scholarship program, NOAA, Boulder, CO 80305, USA 7Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA anow at: Aerodyne Research Inc., Billerica, MA 01821-3976, USA bnow at: Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA *These authors contributed equally to this work. Correspondence to: Robert C. Rhew ([email protected]) Received: 21 April 2017 – Discussion started: 4 May 2017 Revised: 9 September 2017 – Accepted: 28 September 2017 – Published: 10 November 2017 Abstract. Alkenes are reactive hydrocarbons that influence tober flux, based on measurements and modeling, averaged local and regional atmospheric chemistry by playing impor- 62, 52, 24 and 18 µg m−2 h−1 for ethene, propene, butene tant roles in the photochemical production of tropospheric and isoprene, respectively.
    [Show full text]
  • Ethylene in Plant Growth
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 2, pp. 591-597, February 1973 Ethylene in Plant Growth STANLEY P. BURG The Fairchild Tropical Garden, and University of Miami, Miami, Florida 33156 ABSTRACT Ethylene inhibits cell division, DNA syn- of ethylene in plant growth destined to be studied intensively thesis, and growth in the meristems of roots, shoots, and axillary buds, without influencing RNA synthesis. Apical again. dominance often is broken when ethylene is removed, ap- Effects of ethylene on cell division parently because the gas inhibits polar auxin transport ir- reversibly, thereby reducing the shoot's auxin content just When etiolated pea seedlings are grown continuously in the as if the apex had been removed. A similar mechanism presence of a trace of ethylene, the stem hardly elongates and may underly ethylene-induced release from dormancy of root growth is inhibited about 60% (refs. 2, 5, 6; Fig. 3). A buds, tubers, root initials, and seeds. Often ethylene in- hibits cell expansion within 15 min, but delays differentia- swollen zone develops behind the root tip, root hairs prolifer- tion so that previously expanding cells eventually grow to ate, and the root deflects plageotropically in the gravitational enormous size. These cells grow isodiametrically rather field (5-7); similar changes occur in the stem (2, 5, 6). The than longitudinally because their newly deposited cellu- major cause of the overall growth inhibition is cessation or lose microfibrils are laid down longitudinally rather than retardation of the mitotic process in the meristems of the radially. Tropistic responses are inhibited when ethylene root, reversibly and rapidly prevents lateral auxin transport.
    [Show full text]
  • Ethylene Cas N°: 74-85-1
    OECD SIDS ETHYLENE FOREWORD INTRODUCTION ETHYLENE CAS N°: 74-85-1 UNEP PUBLICATIONS OECD SIDS ETHYLENE SIDS INITIAL ASSESSMENT PROFILE CAS No. 74-85-1 CHEMICAL NAME Ethylene STRUCTURAL FORMULA H H C C H H CONCLUSIONS Environment: Ethylene is, due to its physical and chemical properties released mainly into the atmospheric compartment. About three quarters of atmospheric ethylene originates from natural sources, while one quarter is from anthropogenic sources. The main anthropogenic release is from burning of hydrocarbons and biomass. It has been well documented through relevant toxicity studies that the minute amounts measured in water implies little environmental hazard to the organisms in this compartment. In the terrestrial compartment, the vegetation has proven highly susceptible to this gas, probably through a mechanism related to the hormone function of ethylene in plants. Ethylene levels in urban areas have reached levels which inhibit growth of certain plant species. This is of concern both for decorative plants and agriculture in exposed areas. This is mainly due to incomplete burning of coal and petrol products in urban areas. The industrial emission is a minor contribution to total emissions and effects on vegetation are only expected close to production and processing plants. Human Health: Relevant studies have indicated a low toxicity of ethylene and no risk to human health has been identified neither from occupational exposure nor exposure of general public, either exposed directly or indirectly via the environment. However, metabolic studies in animals and man have revealed that ethylene is metabolised to ethylene oxide which is known to have carcinogenic and mutagenic effects.
    [Show full text]
  • (Pahs) Coming from Pyrolysis in Low-Pressure Gas Carburizing Conditions Tsilla Bensabath, Hubert Monnier, Pierre-Alexandre Glaude
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions Tsilla Bensabath, Hubert Monnier, Pierre-Alexandre Glaude To cite this version: Tsilla Bensabath, Hubert Monnier, Pierre-Alexandre Glaude. Detailed kinetic modeling of the for- mation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions. Journal of Analytical and Applied Pyrolysis, Elsevier, 2016, 122, pp.342-354. 10.1016/j.jaap.2016.09.007. hal-01510237 HAL Id: hal-01510237 https://hal.archives-ouvertes.fr/hal-01510237 Submitted on 19 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Title: Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions Authors: Tsilla Bensabatha,b
    [Show full text]