Ethylene Oxide Is Carcinogenic to Humans by the Inhalation Route of Exposure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding Pigments: the Third Step to Higher Quality And
Understanding Pigments: The Third Mark Harber October, 2000 Step to Higher Quality and Consistency Putting great color in your product is part of the pigments. However, they are less opaque and systems approach for resolving issues of sub- would have to be used at higher loading levels to standard properties and appearance. achieve similar whiteness and opacity. This article on pigments is the third in a four-part Titanium Dioxide is used in the majority of the series about the interrelationship of the material products made by the cast polymer industry. Tita- components used in marble and solid surface nium Dioxide-based colors include most whites, manufacturing. These AOC-authored articles re- pastels, earth tones and off-whites such as bone, spond to the challenge that the cast polymer in- ivory, beige or biscuit. As noted in Table 1, non- dustries aspire to higher standards of quality and white synthetic oxides are combined with Titani- consistency. Because resolving cast polymer is- um Dioxide to create pastels and earth tones for sues requires a systems approach, other articles cultured marble and solid surface applications. in this series address resins, gel coats and pro- cessing. All articles begin with background infor- Phthalocyanine pigments, or "Phthalos," impart mation on the main subject matter, followed by deep colors such as the automotive "Hunter ten related issues and guidelines. Green" of a sport utility vehicle or the high strength Blue used in ballpoint pens. Because A BACKGROUND ON COLORANTS they are so deep when used by themselves, In their natural state, cast polymer resins meet a Phthalo Blue and Phthalo Green are normally variety of performance requirements but are lack- blended with other pigments, many times Titani- ing in the color that draws the customer to the um Dioxide. -
Ethylene Dichloride (Edc) Handbook
ETHYLENE DICHLORIDE (EDC) HANDBOOK OXYCHEM TECHNICAL INFORMATION 11/2014 Dallas-based Occidental Chemical Corporation is a leading North American manufacturer of basic chemicals, vinyls and performance chemicals directly and through various affiliates (collectively, OxyChem). OxyChem is also North America's largest producer of sodium chlorite. As a Responsible Care® company, OxyChem's global commitment to safety and the environment goes well beyond compliance. OxyChem's Health, Environment and Safety philosophy is a positive motivational force for our employees, and helps create a strong culture for protecting human health and the environment. Our risk management programs and methods have been, and continue to be, recognized as some of the industry's best. OxyChem offers an effective combination of industry expertise, experience, on line business tools, quality products and exceptional customer service. As a member of the Occidental Petroleum Corporation family, OxyChem represents a rich history of experience, top-notch business acumen, and sound, ethical business practices. 1 Table of Contents Page Introduction to Ethylene Dichloride ............................................................................................................ 3 Manufacturing .................................................................................................................................................. 3 Ethylene Dichloride (EDC) — Uses ................................................................................................................ -
Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11
This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13374 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-25481-6 Toxicology; National Research Council 356 pages 6 x 9 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. -
ETHYLENE GLYCOL: Environmental Aspects
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 22 ETHYLENE GLYCOL: Environmental aspects First draft prepared by Dr S. Dobson, Institute of Terrestrial Ecology, Natural Environment Research Council, Huntingdon, United Kingdom Please note that the layout and pagination of this pdf file are not identical to those of the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2000 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety. -
Toxicological Profile for Ethylbenzene
ETHYLBENZENE 151 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION Ethylbenzene is primarily produced by the alkylation of benzene with ethylene in liquid-phase slurry reactors promoted with aluminum chloride catalysts or by vapor-phase reaction of benzene with dilute ethylene-containing feedstock with a boron trifluoride catalyst supported on alumina (Cannella 2007; Clayton and Clayton 1981; HSDB 2009; Welch et al. 2005; Ransley 1984). Newer versions of the method employ synthetic zeolites in fixed-bed reactors as catalysts for alkylation in the liquid phase or narrow pore synthetic zeolites in fixed-bed reactors in the vapor phase (Welch et al. 2005). Other methods of manufacturing ethylbenzene include preparation from acetophenone, dehydrogenation of naphthenes, catalytic cyclization and aromatization, separation from mixed xylenes via fractionation, reaction of ethylmagnesium bromide and chlorobenzene, extraction from coal oil, and recovery from benzene-toluene-xylene (BTX) processing(Clayton and Clayton 1981; HSDB 2009; Ransley 1984; Welch et al. 2005). Commercial grades of ethylbenzene may contain small amounts of m-xylene, p-xylene, cumene, and toluene (HSDB 2009). Ethylbenzene is traditionally ranked as one of the top 50 chemicals produced in the United States. Table 5-1 shows the historical production volumes of ethylbenzene from 1983 to 2005 (C&EN 1994a, 1994b, 1995, 2006; Kirschner 1995). Table 5-2 lists the facilities in each state that manufacture or process ethylbenzene, the intended use, and the range of maximum amounts of ethylbenzene that are stored on site. There are currently 3,755 facilities that produce, process, or use ethylbenzene in the United States. The data listed in Table 5-2 are derived from the Toxics Release Inventory (TRI06 2008). -
Nitrogen Dioxide
Common Name: NITROGEN DIOXIDE CAS Number: 10102-44-0 RTK Substance number: 1376 DOT Number: UN 1067 Date: May 1989 Revision: April 2000 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Nitrogen Dioxide can affect you when breathed in. * If you think you are experiencing any work-related health * Nitrogen Dioxide may cause mutations. Handle with problems, see a doctor trained to recognize occupational extreme caution. diseases. Take this Fact Sheet with you. * Contact can irritate and burn the skin and eyes with * Exposure to hazardous substances should be routinely possible eye damage. evaluated. This may include collecting personal and area * Breathing Nitrogen Dioxide can irritate the nose and air samples. You can obtain copies of sampling results throat. from your employer. You have a legal right to this * Breathing Nitrogen Dioxide can irritate the lungs causing information under OSHA 1910.1020. coughing and/or shortness of breath. Higher exposures can cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of WORKPLACE EXPOSURE LIMITS breath. OSHA: The legal airborne permissible exposure limit * High levels can interfere with the ability of the blood to (PEL) is 5 ppm, not to be exceeded at any time. carry Oxygen causing headache, fatigue, dizziness, and a blue color to the skin and lips (methemoglobinemia). NIOSH: The recommended airborne exposure limit is Higher levels can cause trouble breathing, collapse and 1 ppm, which should not be exceeded at any even death. time. * Repeated exposure to high levels may lead to permanent lung damage. ACGIH: The recommended airborne exposure limit is 3 ppm averaged over an 8-hour workshift and IDENTIFICATION 5 ppm as a STEL (short term exposure limit). -
Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO
Pediatric Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO Target Audience: Emergency Medicine Residents, Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of ethylene glycol toxicity 2. Order appropriate laboratory and radiology studies in ethylene glycol toxicity 3. Recognize and interpret blood gas, anion gap, and osmolal gap in setting of TA ingestion 4. Differentiate the symptoms and signs of ethylene glycol toxicity from those associated with other toxic alcohols e.g. ethanol, methanol, and isopropyl alcohol Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Perform a mental status evaluation of the altered patient 2. Formulate independent differential diagnosis in setting of leading information from RN 3. Describe the role of bicarbonate for severe acidosis Critical actions checklist: 1. Obtain appropriate diagnostics 2. Protect the patient’s airway 3. Start intravenous fluid resuscitation 4. Initiate serum alkalinization 5. Initiate alcohol dehydrogenase blockade 6. Consult Poison Center/Toxicology 7. Get Nephrology Consultation for hemodialysis Environment: 1. Room Set Up – ED acute care area a. Manikin Set Up – Mid or high fidelity simulator, simulated sweat if available b. Airway equipment, Sodium Bicarbonate, Nasogastric tube, Activated charcoal, IV fluid, norepinephrine, Simulated naloxone, Simulate RSI medications (etomidate, succinylcholine) 2. Distractors – ED noise For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background The setting is an urban emergency department. This is the case of a 2.5-year-old male toddler who presents to the ED with an accidental ingestion of ethylene glycol. The child was home as the father was watching him. The father was changing the oil on his car. -
ETHYLENE from METHANE (January 1994)
Abstract Process Economics Program Report No. 208 ETHYLENE FROM METHANE (January 1994) This report evaluates two routes for the production of ethylene from methane: the direct synthesis based on the oxidative coupling of methane, and the less direct chemistry of converting methanol (which is derived from methane via synthesis gas) in the presence of an aluminophosphate molecular sieve catalyst. Our evaluations indicate that at the present state of development, the economics of both routes are unattractive when compared with the steam pyrolysis of hydrocarbons. We analyze the results of our evaluations to define the technical targets that must be attained for success. We also present a comprehensive technical review that examines not only the two routes evaluated, but also some of the more promising alternative approaches, such as synthesis gas conversion via a modified Fischer-Tropsch process, ethanol synthesis by the homologation of methanol, and ethylene production via methyl chloride. This report will be of interest to petrochemical companies that produce or consume ethylene and to energy-based companies (or equivalent government organizations in various countries) that have access to or control large resources of methane-rich natural gas. PEP’91 SCN CONTENTS 1 INTRODUCTION 1-1 2 SUMMARY 2-1 TECHNICAL REVIEW 2-1 Oxidative Coupling 2-1 Methanol Conversion to Ethylene 2-3 Modified Fischer-Tropsch (FT) Process 2-3 Methanol Homologation 2-3 Conversion via Methyl Chloride 2-4 SRI’S PROCESS CONCEPTS 2-4 Ethylene from Methane by Oxidative -
Ethylene Oxide 1614
ETHYLENE OXIDE 1614 CH2(O)CH2 MW: 44.05 CAS: 75-21-8 RTECS: KX2450000 METHOD: 1614, Issue 2 EVALUATION: FULL Issue 1: 15 August 1987 Issue 2: 15 August 1994 OSHA : 1 ppm PROPERTIES: gas; d (liquid) 0.8694 g/mL @ 20 C; NIOSH: 0.1 ppm; C 5 ppm/10 min; carcinogen; BP 10.7 C; MP 111 C; explosive Group I Pesticide limits 3 to 100% (v/v) in air ACGIH: 1 ppm; suspect carcinogen SYNONYMS: 1,2-epoxyethane; oxirane SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, ECD (HBr-coated petroleum charcoal, 100 mg/50 mg) ANALYTE: 2-bromoethylheptafluorobutyrate FLOW RATE: 0.05 to 0.15 L/min DESORPTION: 1 mL dimethylformamide; stand 5 min VOL-MIN: 1 L @ 5 ppm INJECTION VOLUME: 1 µL -MAX: 24 L TEMPERATURE-INJECTION: 200 C SHIPMENT: routine -DETECTOR: 300 C -COLUMN: 100 C SAMPLE STABILITY: 90% recovery after 17 days @ 25 C CARRIER GAS: 5% CH4 in Ar, 25 mL/min in the dark [3] COLUMN: 3 m x 4 mm glass; 10% SP-1000 BLANKS: 2 to 10 field blanks per set on 80/100 Chromosorb WHP CALIBRATION: standard solutions of 2-bromoethanol in dimethylformamide ACCURACY RANGE: 2 to 42 µg ethylene oxide per sample RANGE STUDIED: 0.04 to 0.98 ppm (24-L samples) [1] ESTIMATED LOD: 1 µg EtO per sample [2] BIAS: 6.9% [1] PRECISION ( r): 0.020 @ 18 to 71 µg EtO per sample [1] OVERALL PRECISION ( rT): 0.062 [1] ACCURACY: ±19% APPLICABILITY: The working range is 0.05 to 4.6 ppm (0.08 to 8.3 mg/m3) for a 24-L air sample. -
Process for the Electrochemical Synthesis of Ethylene Glycol From
Patents mt JEuropiitchesEuropean Patent Office © Publication number: 0 145 239 Office europeen das brevets A1 © EUROPEAN PATENT APPLICATION © Application number: MI07SM.0 © Im.CI.-: C 26 B 3/10 X C 26 B 3/04 ® D.t. of mine: M.11J4 //C07C47/04, C07C31/20 (§) Priority: 03.11.SI US MS481 © Applicant: THE HALCON SD GROUP, INC. 2 Park Avenue New York, N.Y.1001MUS) VjjJ Data of publication of application: 1B.MM Bulletin IB/2B @ Inventor: Barber, James J. 24 Milo Street @ Designated Contracting States: West Newton Massachusetts 02118IUS) n m m oi rr ni @ Representative: Cropp, John Anthony David et al, MATHYS ft SQUIRE 10 Fleet Street London, IC4Y1AYJQB) ® Proeess for the eleetroehemfsel synthesis of ethylene Olyeol from formaldehyde. A© processA proeeea for the formationformetion of glycols,glyws, partlcyisrtyponiewarly ethylene glyeelglycol through the eteetreehemicalelectrochemical eeupllngaoupling of aldehyde*sidthydes auehsuch *•so formefdehydeformotdohyde In neutral or addleacidic solu>solu. tlonetlont producing high yields and product teleetlvitiesselectivities lais disclosed.disclssd. The process cancen alioelso hebe effectivelysffectively operated Inin the presence of ae widewide varietyveriety of polar,poier, miselble,misalble, organicorgenle eoeelvents.ecselvente Cr&yttoft PUMin^ Comp«r<Y IM. BACKGROUND OF THE INVENTION Field of the Invention This invention relates to a process for the produc- tion of a glycol from an aldehyde feedstock, and more particularly, relates to an efficient electrochemical cou- pling of formaldehyde in neutral or acidic aqueous or aqueous-organic solutions at carbon-based electrodes to form ethylene glycol. Description of the Prior Art The formation of glycols through the mechanism of an electrochemical coupling of selected aldehydes and ketones is a generic reaction well documented in the prior art. -
Hydrogenation of Ethylene on Metallic Catalysts
S ro Hating Bure* M “"“^ piu&« Ubwu, Ml ®min’ JUN 2 1 1S68 A 1 1 1 2 mbESD NATX INST OF STANDARDS & TECH R.I.C. NSRDS-NBS 13 NSRDS 11 021 46250 ™SRDS.NB^ QC100 -U573 V13;1968 C.1 sH *- NBS-PUB-C 1964 ^f#Cf DftU NBS 'USUCATfONS Hydrogenation of Ethylene Metallic Catalysts U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS National Standard Reference Data Series National Bureau of Standards National Standard Reference Data System, Plan of Operation, NSRDS-NBS 1 — 15 cents* Thermal Properties of Aqueous Uni-univalent Electrolytes NSRDS-NBS 2 — 45 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si II, Si ill, Si iv, NSRDS-NBS 3, Section 1—35 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si I NSRDS — NBS 3, Section 2 — 20 cents* Atomic Transition Probabilities, Volume I, Hydrogen Through Neon, NSRDS-NBS 4 — $2.50* The Band Spectrum of Carbon Monoxide, NSRDS-NBS 5 — 70 cents* Tables of Molecular Vibrational Frequencies. Part 1, NSRDS-NBS 6 — 40 cents* High Temperature Properties and Decomposition of Inorganic Salts. Part 1. Sulfates, NSRDS-NBS 7-35 cents* Thermal Conductivity of Selected Materials, NSRDS-NBS 8 — $1.00* Tables of Biomolecular Gas Reactions, NSRDS-NBS 9 — $2.00* Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, NSRDS- NBS 10 — 40 cents* Tables of Molecular Vibrational Frequencies, Part 2, NSRDS-NBS 11 — 30 cents* Tables for the Rigid Asymmetric Rotor: Transformation Coefficient from Symmetric to Asymmetric Bases Expectation Values of P\ and 4 NSRDS-NBS 12 — in press. -
Synthesis of Aliphatic Amines and Substituted Pyridines Over HZSM",5 Catalyst
Indian Journal of Chemistry Vol. 30A, December 1991, pp.1041-1043 Synthesis of aliphatic amines and tom. The products were analyzed using'5% SE-30 substituted pyridines over HZSM",5 and carbowax columns by gas chromatography. The catalyst' mass spectra were used to confirm the product ana- lysis. SJKu1karni* & M Subrahmanyam Results and discussion Indian Institute of Chemical Technology, Hyderabad 500 007, The reaction of propylene oxide with ammonia in India water was carried out over HZSM-5 catalyst in the Received 18 June 1991; revised 5 August 1991; accepted range 300-400°C (Tables 1 and 2). Above 220°C, 9 September 1991 the conversion with respect to propylene oxide was The reactions of propylene oxide, propylene glycol, 100 percent and the formation of picolines de- ethylene glycol and acetaldehyde with ammonia have creased with the increase in temperature from 300 been carried out in the temperature range 220°C-450°C to 400°C. The maximum selectivity to 2-picoline with water as diluent. The major products obtained are was 12.0 percent at 300°C with the reactants to wa- methylamine, ethylamine, picolines and acetone. The ter ratio (by volume) was 1:1. The increase of water reaction schemes are proposed based on the product in the feed decreased the picoline formation. The al- distribution. The reactions of acetaldehyde or propylene iphatic amines, particularly, methylamine, ethyla- glycol with ammonia lead to picolines in high yield over mine and acetone were invariably observed in the HZSM-5 catalyst. products in the temperature of 220 to 400°C. The substituted pyridines like picolines are useful intermediates in the preparation of herbicides, Table I-The effect of temperature on the product distribution in the reaction of propylene oxide with ammonia over HZSM-5 pharmaceuticals and surface-active agents.