Geographic Coordinate System Guidelines

Total Page:16

File Type:pdf, Size:1020Kb

Geographic Coordinate System Guidelines JULY 2, 2019 Geographic Coordinate System Guidelines 4C Services GmbH Hohenzollernring 72, 50672 Köln, Germany Tel. +49-221-50802050 www.4C-Services.org 1. Background To obtain a 4C certificate and to start the audit process, 4C Services requires the provision of explicit geographic coordinates of the producers and service providers of a 4C Unit within the template of the Business Partner Map (BPM). The requirement is to provide the coordinates in a specific geographic format, the decimal degree. This document provides a guideline to identify if the coordinates are given in the correct format and how to conduct a fast reasonability test for the given coordinates. 2. Overview of different formats of geographic coordinates A geographic coordinate system is a coordinate system that enables every location on Earth to be specified by a set of numbers, letters or symbols. All coordinate systems and formats have in common that the location is specified with an x- and a y-value. There are several possibilities how the coordinate could look like in different systems and formats: Required standard for 4C Alternative formats, that are not accepted by 4C Another type of decimal Degree, Minutes, Decimal degree coordinate UTM Coordinate Place degree coordinate Seconds/DMS coordinate (Latitude, Longitude) (projected coordinate) (Latitude, Longitude) (Latitude, Longitude) Cologne 50.935055°, 6.963833° 50.935055° N, 6.963833° E 50° 56' 06.2" N, 6° 57' 49.8" E 356929.8, 5644577.1 Bogotá 4.710989°, -74.072092° 4.710989° N, 74.072092° W 4° 42' 39.6" N, 74° 04' 19.5" W 397089.1, 520786.2 Remarks Latitude: Latitude Latitude Note Value between -90° and 90° N = North, S = South N = North, S = South In this case, the coordinate is transformed Minus indicate position in Longitude Longitude into a two-dimensional Southern Hemisphere E = East, W = West E = East, W = West metric system. A Longitude: commonly used metric Note Note system is e.g. UTM. Value between -180° and 180° In this format, the indication In this format, the coordinate is Without knowing which Minus indicate position in of southern or western not given in a decimal value, but metric system has been Western Hemisphere hemisphere is not indicated in Degrees, Minutes and used, the exact location by a – (Minus), but by the Seconds. The coordinates can cannot be indicated with Note letters S or W be transformed into the required this format and therefore The ° (degree sign) is optional decimal degree format (see cannot be accepted by 4C useful websites below) 1 3. Typical mistakes that can be identified by a fast scroll through the coordinates in the BPM Examples Notes Cologne Bogotá (Latitude, Longitude) (Latitude, Longitude) Correct format in decimal degree The latitude value is between -90 and 90 50.935055, 6.963833 4.710989, -74.072092 The longitude value is between -180 and 180 Also correct in decimal degree The latitude value is between -90 and 90 50.935055°, 6.963833° 4.710989°, -74.072092° The longitude value is between -180 and 180 Problem: Values are not between -90 and 90, or 180 and -180, respectively Possible explanations: 50.935055, 696.3833 4710989, -74072092 a) Typo, comma at wrong position or forgotten c) wrong coordinate system (e.g. UTM) b) Wrong coordinate Problem: Positive values, even if the region of the 4C unit is on the southern or western hemisphere 50.935055, 6.963833 4.710989, 74.072092 Possible explanations: a) Typo, minus missing b) Wrong coordinate 2 4. How to conduct a fast reasonability test with the coordinates After the verification that the coordinates are given in the correct format, a fast reasonability test with a small sample size of the coordinates can reveal if the locations are at least in the correct region. The region should be indicated in the BPM. Step 1: Go to GoogleMaps (or equivalent website) and navigate to the country/region, where the 4C unit is located. Get an overview where the country / region is located. Location Notes Region is in the southern hemisphere Latitude-value should be negative Region is in the western hemisphere Longitude-value should be negative Step 2: Click into the map to read out the coordinates (see chapter 5 for examples). Question Notes The given coordinate within a region should fit roughly to coordinates Which coordinate is displayed? Does it fit roughly to the from the BPM. Tip: Use the BPM information to find out, where the coordinates given in the BPM? coordinates should be located (e.g. Municipality) and then navigate to that region in the map Step 3: Type in a random sample coordinate of the BPM into the search-box of GoogleMaps (latitude, longitude) and observe where you are navigated to. Question Notes YES: Everything is fine. Repeat the test with some other randomly chosen points, especially if the 4C Unit is spread among different regions/municipalities NO: If you end up in the ocean, a different country or even a different Do you end up in the respective region of the point (e.g. continent, it can have the following reasons: according to the Municipality mentioned in the BPM)? a) Longitude and latitude are transposed b) The minus (-) for the hemisphere indication is missing c) The given coordinates are wrong 3 5. Examples from Google Maps a) Cologne Latitude 50.9412830 Positive value means in Northern Hemisphere Longitude 6.9582700 Positive value means in Eastern Hemisphere b) Argentina Latitude -34.6207000 Negative value means in Southern Hemisphere Longitude -58.3705870 Negative value means in Western Hemisphere 4 6. Background Information: Latitude and Longitude Coordinate in the Geographic Coordinate System image source: http://eogn.com/images/newsletter/2014/Latitude-and-longitude.png Latitude Longitude Lines measured in north-south position between the poles Lines of longitude/meridian measured east-west position Equator is defined as 0° Prime meridian of 0° runs through Greenwich, England Northern Hemisphere: Eastern Hemisphere: 0 until +90 0 until +180 Southern Hemisphere: Western Hemisphere: 0 until -90 0 until -180 image source: https://wiki--travel.com/img/flat-map-of-the-world-with-longitude-and-latitude-2.html 5 a. Two common formats of Latitude and Longitude Coordinate: 1) DDD° MM' SS.S" : Degrees, Minutes and Seconds 4° 42' 39.6" N 74° 04' 19.5" W Most common format used to mark maps 2) DDD.DDDDD° : Decimal Degrees 4.710989° N 74.072092° W or +4.710989, -74.072092 Most common format in most computer-based mapping system displaying (e.g.: Google Map, Google Earth) b. Coordinate Conversion 15” = 0.25’ Symbol Definition: 30” = 0.5’ 0 : Degrees 45” = 0.75’ ‘ : Minutes 60” = 1’ “ : Seconds 60’ = 1° + Northern Hemisphere or Eastern Hemisphere - Southern Hemisphere or Western Hemisphere c. Conversion Tools Conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Below are several useful links for conversion between latitude longitude coordinate and projected coordinate . http://www.rcn.montana.edu/resources/converter.aspx . http://www.synnatschke.de/geo-tools/coordinate-converter.php . https://www.latlong.net/lat-long-utm.html . https://www.latlong.net/lat-long-dms.html . http://www.earthpoint.us/Convert.aspx . http://www.zonums.com/online/coords/cotrans.php?module=1 . https://www.geoplaner.com 6.
Recommended publications
  • AS/NZS ISO 6709:2011 ISO 6709:2008 ISO 6709:2008 Cor.1 (2009) AS/NZS ISO 6709:2011 AS/NZS ISO 6709:2011
    AS/NZS ISO 6709:2011 ISO 6709:2008 ISO 6709:2008 Cor.1 (2009) AS/NZS ISO 6709:2011AS/NZS ISO Australian/New Zealand Standard™ Standard representation of geographic point location by coordinates AS/NZS ISO 6709:2011 This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee IT-004, Geographical Information/Geomatics. It was approved on behalf of the Council of Standards Australia on 15 November 2011 and on behalf of the Council of Standards New Zealand on 14 November 2011. This Standard was published on 23 December 2011. The following are represented on Committee IT-004: ANZLIC—The Spatial Information Council Australasian Fire and Emergency Service Authorities Council Australian Antarctic Division Australian Hydrographic Office Australian Map Circle CSIRO Exploration and Mining Department of Lands, NSW Department of Primary Industries and Water, Tas. Geoscience Australia Land Information New Zealand Mercury Project Solutions Office of Spatial Data Management The University of Melbourne Keeping Standards up-to-date Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased. Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.
    [Show full text]
  • International Standard
    International Standard INTERNATIONAL ORGANIZATION FOR STANDARDIZATlON.ME~YHAPO~HAR OPI-AHH3AWlR fl0 CTAH~APTM3Al&lM.ORGANISATION INTERNATIONALE DE NORMALISATION Standard representation of latitude, longitude and altitude for geographic Point locations Reprksen ta tion normalis6e des latitude, longitude et altitude pbur Ia localisa tion des poin ts gkographiques First edition - 1983-05-15i Teh STANDARD PREVIEW (standards.iteh.ai) ISO 6709:1983 https://standards.iteh.ai/catalog/standards/sist/40603644-5feb-4b20-87de- d0a2bddb21d5/iso-6709-1983 UDC 681.3.04 : 528.28 Ref. No. ISO 67094983 (E) Descriptors : data processing, information interchange, geographic coordinates, representation of data. Price based on 3 pages Foreword ISO (the International Organization for Standardization) is a worldwide federation of national Standards bodies (ISO member bedies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. International Standard ISO 6709 was developediTeh Sby TTechnicalAN DCommitteeAR DISO/TC PR 97,E VIEW Information processing s ystems, and was circulated to the member bodies in November 1981. (standards.iteh.ai) lt has been approved by the member bodies of the following IcountriesSO 6709 :1: 983 https://standards.iteh.ai/catalog/standards/sist/40603644-5feb-4b20-87de- Belgium France d0a2bddRomaniab21d5/is o-6709-1983 Canada Germany, F.
    [Show full text]
  • QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
    QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles.
    [Show full text]
  • AIM: Latitude and Longitude
    AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address.
    [Show full text]
  • Core Concepts Study Guide Absolute Location – Exact Position on Earth In
    Geography – Core Concepts Study Guide absolute location – exact position on Earth in terms of longitude and latitude aerial photograph - photographic image of Earth's surface taken from the air cardinal direction – north, east, south, and west compass rose - diagram of a compass showing direction degree – unit that measures angles distortion – loss of accuracy elevation - height above sea level Geographic information system (GIS) - computer-based system that stores and uses information linked to geographic locations geography – study of the human and nonhuman features of Earth hemisphere – one half of Earth human-environment interaction - how people affect their environment and how their environment affects them key - section of a map that explains the map's symbols and shading latitude – distance north or south of the Equator measured in degrees locator map - section of a map that shows a larger area than the main map longitude – distance east or west of the Prime Meridian measured in degrees movement - how people, goods, and ideas get from one place to another physical map - map that shows physical, or natural, features place – mix of human and nonhuman features at a given location political map - map that shows political units, such as countries or states projection - way to map Earth on a flat surface region - area with at least one unifying physical or human feature such as climate, landforms, population, or history relative location – location of a place relative to another place satellite image - picture of Earth's surface taken from a satellite in orbit scale – relative size scale bar – section of a map that shows how much space on the map represents a given distance on the land special-purpose map - map that shows the location or distribution of human or physical features sphere – round-shaped body What do geographers study? Geographers study human and nonhuman features of Earth.
    [Show full text]
  • National Geographic Geography Skills Handbook
    Geography Skills Handbook How Do I Study Geography? eographers have tried to understand the best way to teach and learn about geography. GIn order to do this, geographers created the Five Themes of Geography. The themes acted as a guide for teaching the basic ideas about geography to students like yourself. People who teach and study geography, though, thought that the Five Themes were too broad. In 1994, geographers created 18 national geography standards. These standards were more detailed about what should be taught and learned. The Six Essential Elements act as a bridge connecting the Five Themes with the standards. These pages show you how the Five Themes are related to the Six Essential Elements and the 18 standards. 5 Themes of Geography 1 Location Location describes where something is. Absolute location describes a place’s exact position on the Earth’s surface. Relative location expresses where a place is in relation to another place. 2 Place Place describes the physical and human characteristics that make a location unique. 3 Regions Regions are areas that share common characteristics. 4 Movement Movement explains how and why people and things move and are connected. 5 Human-Environment Interaction Human-Environment Interaction describes the relationship between people and their environment. (t to b)ThinkStock /SuperStock, (2)Janet F oster/Masterfile , (3)Mark Tomalty/Masterfile , (4)© age fotostock / SuperStock, (5)Jurgen Freund /Nature Picture Library Themes and Elements 6 18 Essential Elements Geography Standards I. The World in Spatial Terms 1 How to use maps and other tools Geographers look to see where a place is located.
    [Show full text]
  • Latitude/Longitude Data Standard
    LATITUDE/LONGITUDE DATA STANDARD Standard No.: EX000017.2 January 6, 2006 Approved on January 6, 2006 by the Exchange Network Leadership Council for use on the Environmental Information Exchange Network Approved on January 6, 2006 by the Chief Information Officer of the U. S. Environmental Protection Agency for use within U.S. EPA This consensus standard was developed in collaboration by State, Tribal, and U. S. EPA representatives under the guidance of the Exchange Network Leadership Council and its predecessor organization, the Environmental Data Standards Council. Latitude/Longitude Data Standard Std No.:EX000017.2 Foreword The Environmental Data Standards Council (EDSC) identifies, prioritizes, and pursues the creation of data standards for those areas where information exchange standards will provide the most value in achieving environmental results. The Council involves Tribes and Tribal Nations, state and federal agencies in the development of the standards and then provides the draft materials for general review. Business groups, non- governmental organizations, and other interested parties may then provide input and comment for Council consideration and standard finalization. Standards are available at http://www.epa.gov/datastandards. 1.0 INTRODUCTION The Latitude/Longitude Data Standard is a set of data elements that can be used for recording horizontal and vertical coordinates and associated metadata that define a point on the earth. The latitude/longitude data standard establishes the requirements for documenting latitude and longitude coordinates and related method, accuracy, and description data for all places used in data exchange transaction. Places include facilities, sites, monitoring stations, observation points, and other regulated or tracked features. 1.1 Scope The purpose of the standard is to provide a common set of data elements to specify a point by latitude/longitude.
    [Show full text]
  • Why Do We Use Latitude and Longitude? What Is the Equator?
    Where in the World? This lesson teaches the concepts of latitude and longitude with relation to the globe. Grades: 4, 5, 6 Disciplines: Geography, Math Before starting the activity, make sure each student has access to a globe or a world map that contains latitude and longitude lines. Why Do We Use Latitude and Longitude? The Earth is divided into degrees of longitude and latitude which helps us measure location and time using a single standard. When used together, longitude and latitude define a specific location through geographical coordinates. These coordinates are what the Global Position System or GPS uses to provide an accurate locational relay. Longitude and latitude lines measure the distance from the Earth's Equator or central axis - running east to west - and the Prime Meridian in Greenwich, England - running north to south. What Is the Equator? The Equator is an imaginary line that runs around the center of the Earth from east to west. It is perpindicular to the Prime Meridan, the 0 degree line running from north to south that passes through Greenwich, England. There are equal distances from the Equator to the north pole, and also from the Equator to the south pole. The line uniformly divides the northern and southern hemispheres of the planet. Because of how the sun is situated above the Equator - it is primarily overhead - locations close to the Equator generally have high temperatures year round. In addition, they experience close to 12 hours of sunlight a day. Then, during the Autumn and Spring Equinoxes the sun is exactly overhead which results in 12-hour days and 12-hour nights.
    [Show full text]
  • AS/NZS ISO 6709:2008 Standard Representation of Latitude, Longitude
    AS/NZS ISO 6709:2008 ISO 6709:1983 AS/NZS ISO 6709:2008 Australian/New Zealand Standard™ Standard representation of latitude, longitude and altitude for geographic point locations AS/NZS ISO 6709:2008 This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee IT-004, Geographical Information/Geomatics. It was approved on behalf of the Council of Standards Australia on 25 July 2008 and on behalf of the Council of Standards New Zealand on 21 July 2008. This Standard was published on 16 September 2008. The following are represented on Committee IT-004: ACT Planning and Land Authority ANZLIC - the Spatial Information Council Australian Antarctic Division Australian Bureau of Statistics Australian Hydrographic Office Australian Key Centre In Land Information Studies Australian Map Circle Australian Spatial Information Business Association CSIRO Exploration & Mining Department for Administrative and Information Services (SA) Department of Defence (Australia) Department of Lands NSW Department of Natural Resources and Water (Qld) Department of Planning and Infrastructure (NT) Department of Primary Industries and Water Tasmania Department of Sustainability and Environment (Victoria) Geoscience Australia InterGovernmental Committee on Surveying and Mapping Land Information New Zealand Office of Spatial Data Management Western Australian Land Information System Keeping Standards up-to-date Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.
    [Show full text]
  • AEN-88: the Global Positioning System
    AEN-88 The Global Positioning System Tim Stombaugh, Doug McLaren, and Ben Koostra Introduction cies. The civilian access (C/A) code is transmitted on L1 and is The Global Positioning System (GPS) is quickly becoming freely available to any user. The precise (P) code is transmitted part of the fabric of everyday life. Beyond recreational activities on L1 and L2. This code is scrambled and can be used only by such as boating and backpacking, GPS receivers are becoming a the U.S. military and other authorized users. very important tool to such industries as agriculture, transporta- tion, and surveying. Very soon, every cell phone will incorporate Using Triangulation GPS technology to aid fi rst responders in answering emergency To calculate a position, a GPS receiver uses a principle called calls. triangulation. Triangulation is a method for determining a posi- GPS is a satellite-based radio navigation system. Users any- tion based on the distance from other points or objects that have where on the surface of the earth (or in space around the earth) known locations. In the case of GPS, the location of each satellite with a GPS receiver can determine their geographic position is accurately known. A GPS receiver measures its distance from in latitude (north-south), longitude (east-west), and elevation. each satellite in view above the horizon. Latitude and longitude are usually given in units of degrees To illustrate the concept of triangulation, consider one satel- (sometimes delineated to degrees, minutes, and seconds); eleva- lite that is at a precisely known location (Figure 1). If a GPS tion is usually given in distance units above a reference such as receiver can determine its distance from that satellite, it will have mean sea level or the geoid, which is a model of the shape of the narrowed its location to somewhere on a sphere that distance earth.
    [Show full text]
  • GMT and Longitude by Lunar Distance: Two Methods Compared from a Practitioner’S Point of View
    THE JOURNAL OF NAVIGATION (2019), 72, 1660–1664. c The Royal Institute of Navigation 2019 doi:10.1017/S0373463319000341 FORUM GMT and Longitude by Lunar Distance: Two Methods Compared From a Practitioner’s Point of View Eric Romelczyk (E-mail: [email protected]) This article discusses the technique of observing lunar distance - that is, angular distance between the moon and another celestial body - to establish universal time and longitude, from a practitioner’s point of view. The article presents a brief overview of the principles underlying the lunar distance observation and its use in celestial navigation. A discussion follows of two different methods for finding universal time by observing lunar distance, Dr. Wendel Brunner’s calculator-based method and the specialised inspection tables created by Bruce Stark. The article compares the two methods against each other for ease of use and accuracy. The author concludes that either method will provide satisfactory results, but that the technique of observing lunar dis- tance is unlikely to regain relevance in the modern-day practice of navigation and is primarily useful as a skill-building exercise in making sextant observations. KEYWORDS 1. Navigation. 2. History. 3. Nautical. 4. Time. Submitted: 8 August 2018. Accepted: 14 April 2019. First published online: 2 May 2019. 1. INTRODUCTION. 1.1. History of the lunar distance method. For centuries of seafaring history, a method for accurately measuring time to the degree of precision necessary to establish the navigator’s longitude was out of reach for practical purposes. It had been understood since the mid-16th century that the navigator’s longitude could be established either by reference to the moon’s angular distance from other celestial bodies - the “lunar distance”, measured by careful sextant observations - or by reference to a timepiece of sufficient accuracy.
    [Show full text]
  • Spherical Coordinate Systems
    Spherical Coordinate Systems Exploring Space Through Math Pre-Calculus let's examine the Earth in 3-dimensional space. The Earth is a large spherical object. In order to find a location on the surface, The Global Pos~ioning System grid is used. The Earth is conventionally broken up into 4 parts called hemispheres. The North and South hemispheres are separated by the equator. The East and West hemispheres are separated by the Prime Meridian. The Geographic Coordinate System grid utilizes a series of horizontal and vertical lines. The horizontal lines are called latitude lines. The equator is the center line of latitude. Each line is measured in degrees to the North or South of the equator. Since there are 360 degrees in a circle, each hemisphere is 180 degrees. The vertical lines are called longitude lines. The Prime Meridian is the center line of longitude. Each hemisphere either East or West from the center line is 180 degrees. These lines form a grid or mapping system for the surface of the Earth, This is how latitude and longitude lines are represented on a flat map called a Mercator Projection. Lat~ude , l ong~ude , and elevalion allows us to uniquely identify a location on Earth but, how do we identify the pos~ion of another point or object above Earth's surface relative to that I? NASA uses a spherical Coordinate system called the Topodetic coordinate system. Consider the position of the space shuttle . The first variable used for position is called the azimuth. Azimuth is the horizontal angle Az of the location on the Earth, measured clockwise from a - line pointing due north.
    [Show full text]