E:\Data\User\Pfh\Home\My Documents\DTU\2+\Fag\2004F

Total Page:16

File Type:pdf, Size:1020Kb

E:\Data\User\Pfh\Home\My Documents\DTU\2+\Fag\2004F RNAmmer: Fast two-level HMM prediction of rRNA in prokaryotic genome sequences Peter F. Hallin Peter F. Hallin, s971636. February 21st 2005 This report is written as part of the 10p special course scheduled for 2nd semester in the International Masters program in Bioinformatics at the Center for Biological Sequence Analysis, Technical University of Denmark. Supervisor is David W. Ussery. Table of contents Table of contents .................................................................. 2 Abstract ......................................................................... 3 Introduction ...................................................................... 3 BLAST - A common approach ................................................. 4 Strategy .................................................................. 4 Methods ........................................................................ 5 Model construction .......................................................... 5 Homology reduction of dataset ................................................. 5 Alignment conservation ...................................................... 7 HMM building ............................................................. 9 Results and evaluation ............................................................ 10 Selectivity and sensitivity .................................................... 10 Accuracy - deviation in start/stop positions ....................................... 11 Length deviations .......................................................... 12 Example of annotations ..................................................... 13 Proof of Concept ................................................................. 14 Conclusion ..................................................................... 14 Appendices ..................................................................... 15 Appendix A: Sequence count in phylogenetic group ................................ 15 Appendix B: Perl implementation of plotcon algorithm .............................. 16 Appendix C: Model building and post script generation ............................. 17 Appendix D: Makefile for RNAmmer- parsing search results and calculating accuracy ...... 21 Appendix E: 16s rRNA tree of the Genome Atlas Database .......................... 22 Appendix F: RNAmmer vs. complete search in a 1,6Mb Bacteria ...................... 23 Appendix G: RNAmmer source code ........................................... 24 References ..................................................................... 26 Abstract A program has been developed which uses Hidden Markov Models (HMMs) to predict rRNA genes in Bacterial DNA. The program uses a short 75bp conserved region of the molecule to build a model for an initial ‘spotter' and a full length HMM to model the entire molecule. This avoids the scanning of entire genome sequences with large and slow models. The program has been implemented in a Makefile and results have been gathered from a collection of full genome sequences (n=236). The program has proven significantly better than the previous BLAST approach that was used in the Genome Atlas Database and predictions on well annotated genomes suggests selectivity and specificity of prediction in the range of 0.993 to 0.999. During the evaluation of the program a few genbank files were identified as having rRNA annotated on the wrong strands. Introduction The 16s rRNA molecule has been used as a finger print or evolutionary chronometer of microbial genomes for years. It is essential for Comparative Genomics to see genomic properties in phylogenetic context and mutations in the 16s rRNA is often used to measure evolutionary distance of sequenced microbial organisms. The quality of such distance estimates depends on alignment quality - but most important is a proper identification of the individual sequences. Since the rRNA molecules are highly conserved one should believe that they would be easily detectable and that these features would be consistently annotated in all GenBank files being published. Researchers feel tempted to use BLAST to identify rRNA genes. Such predictions might lead to problems as will be discussed later in this report. The distributions below shows the three peaks of 5s, 16s and 23s of all sequenced Bacterial genomes. The width of each major peak is likely to reflect a true variation of the lengths of the molecules, as is visible in panel A in figure 1. Panel B shows the distribution of the first 10 sequences to underline the few (but not least important) poorly annotated molecules with lengths up to 6,000 bp. Although not visible in these histograms it is later to be shown that even the correct strand can be missed in the processes of annotations and compilation of the GenBank/EMBL files. Large Subunits having length around half of an average Small Subunit was also identified. These plots are generated in a bit crude manner since they are simple extract of annotated features containing the word ‘rRNA’. Later in this report, we will compare the lengths from features where predictions overlap with annotations. AB Distribution of lengths of rRNA moleclus in all sequenced Bacteria 10 600 8 500 6 400 t t n n u u o o C C 300 4 200 2 100 0 0 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 Length Length Figure 1: Panel A: Histogram of all rRNA genes in sequenced bacterial genomes. Panel B: First 10 counts. 3 BLAST.4AST - A common approach Most services for detecting rRNA are based on a BLAST approach. There are different problems involved relying on this method: A. Each match/mismatch of the alignment contributes with the same weight when calculating the score - in other words it’s a linear scoring scheme . B. The ‘model’ for a BLAST approach is a database of already sequenced rRNA molecules. If sequences which deviate significantly from the content of this database are to be found, the BLAST approach will fail. It relies on the assumption that the database assembles all phylogenetic groups . C. BLAST fails to do any form of weighting of domains that are highly conserved . D. The score of a BLAST hit is difficult to interpret. It will be equal to the score/E-value of the closest related molecule in the database. If, by chance, the database contains a sequence of the same genus and species as that of a given query, then the final score will be good. However, the score/E-value will be poor if no similar genus and species are found in the database. Scoring depends on the diversity of the database . Strategy Our strategy was to obtain structurally aligned sequences from publicly available rRNA databases. By doing so, we achieve avoid forcing an artificial nucleotide conservation into the models by doing sequence alignment. These alignments can be directly presented to software that can generate a profile HMM from an alignment. The European Ribosomal RNA database (Jan Wuyts et al. 2002, http://www.psb.ugent.be/rRNA/) contains a comprehensive collection of SSU and LSU rRNA sequences. These sequences are kept in the ‘distribution format', which includes information from a structural alignments as shown in figure 2. acc:X53497 (accession no.) src:NoData (source) str:MUCL 29800, ATCC 18804, CBS 562 (strain info.) ta1:Eukarya (taxonomic info.) ta2:Fungi (taxonomic info.) ta3:Eumycota (taxonomic info.) ta4:Ascomycotina (taxonomic info.) ta5:Hemiascomycetes (taxonomic info.) chg:this sequence is not in EMBL (changes other than del with regards to original EMBL entry) rem:this is just an example (remarks about the entry) aut:person 1, person 2 (authors) ttl:The SSU rRNA sequence of a species (title) jou:Journal name (journal) dat:1989 (journal year) vol:12 (journal volume) pgs:223-229 (journal pages) mty:SSU (type of RRNA) del:500 AUG 800 AAAA (deletions made to keep alignment size down: <sequence position> <deleted> ...) seq:organism name (organism name) -------------------------------------------------------------------------------- --------------------------UAU[CUGGU]U-----GA[UCCU^GCCAG^UAGU{-C}AUA-UGCU]--[UGUC ]UCAAAG--AU-UAA[GCC{A-}UGC]A-UGUCUA-[A-GU{A-UAA-}GC]A--------------------------- -----------------------AUUUAU-AC------------------------------------------------ ------------------------------------------A[G-U{-G--AA}AC-U]GCGAA--UGG[C-UC]AUUA ---AAU-[CAG{UU}AU{--CG}U-U{UA--UU}UGA]UAG--UA--CC--------------------------UU-AC -UA[C(U)UG(G)-AU{AACCG-}UGG]UAAU-U[CUA{-GAGCUA}AU(A)-CA(U)G]CUU------AAA-[AUCCC{ G-A}CU]--------------------------------------------GUUU------------------------- .....* Figure 2: Example of a database entry in “distribution format”. The format is easy to parse and has been stored in a mySQL table (Updated version: genome.pfh_public.rdb, frozen version: genome.pfh_public.rdb_report) We believe this database is one of the most consistent an well maintained SSU/LSU on the web. It should be noted that this database does not contain the complete LSU structure since the 5s/8s molecule is missing. In this report we chose to label 5s and 8s as ‘TSU’ (tiny sub unit), and it is downloaded separately from the Institute of Bioorganic Chemistry at the Polish Academy of Sciences. (http://biobases.ibch.poznan.pl/5SData/). Alignments from both these locations have been imported to the same database as mentioned above. Statistics from this table is shown in figure 3. 4 mysql> select mty,length(clr),count(*),length(clr),stddev(length(clr)) from rdb where ta1 not like '%environment%' group by length(clr); +------+-------------+----------+-------------+---------------------+
Recommended publications
  • Light and Transmission Electron Microscopy of Cepedea Longa (Opalinidae) from Fejervarya Limnocharis
    Parasite 2017, 24,6 Ó C. Li et al., published by EDP Sciences, 2017 DOI: 10.1051/parasite/2017006 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Light and transmission electron microscopy of Cepedea longa (Opalinidae) from Fejervarya limnocharis Can Li1, Xiao Jin1, Ming Li2,*, Guitang Wang2, Hong Zou2, Wenxiang Li2, and Shangong Wu2 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China Received 21 October 2016, Accepted 18 January 2017, Published online 1 February 2017 Abstract – Cepedea longa Bezzenberger, 1904, collected from Fejervarya limnocharis (Amphibia, Anura, Ranidae) from Honghu Lake, Hubei Province, China in May–July 2016, is described at both light and transmission electron microscope levels. This is the first electron microscopic study of this species. Cepedea longa possesses a developed fibrillar skeletal system, composed of longitudinal fibrillar bands and transversal fibrils as well as numerous thin microfibrils dispersed in the endoplasm, which may play an important role in morphogenesis and offer some resilience to deformations of the cell. Longitudinal microfibrils are polarizing elements of kineties, bordering the somatic kin- eties on the left side and possibly responsible for kinetosome alignment. Two types of vesicles exist in the somatic cortex: globular endocytotic vesicles and flattened exocytotic vesicles. As to the nuclei of C. longa, a thick microfib- rillar layer was observed to attach to the cytoplasmic face of the nuclear envelope. This fact suggests no necessary connection between the presence of this microfibrillar layer and the number of nuclei.
    [Show full text]
  • Phylogenetic Position of Karotomorpha and Paraphyly of Proteromonadidae
    Molecular Phylogenetics and Evolution 43 (2007) 1167–1170 www.elsevier.com/locate/ympev Short communication Phylogenetic position of Karotomorpha and paraphyly of Proteromonadidae Martin Kostka a,¤, Ivan Cepicka b, Vladimir Hampl a, Jaroslav Flegr a a Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic b Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic Received 9 May 2006; revised 17 October 2006; accepted 2 November 2006 Available online 17 November 2006 1. Introduction tional region is alike that of proteromonadids as well, double transitional helix is present. These similarities led Patterson The taxon Slopalinida (Patterson, 1985) comprises two (1985) to unite the two families in the order Slopalinida and families of anaerobic protists living as commensals in the to postulate the paraphyly of the family Proteromonadidae intestine of vertebrates. The proteromonadids are small (Karotomorpha being closer to the opalinids). The ultrastruc- Xagellates (ca. 15 m) with one nucleus, a single large mito- ture of Xagellar transition region and proposed homology chondrion with tubular cristae, Golgi apparatus and a Wbril- between the somatonemes of Proteromonas and mastigo- lar rhizoplast connecting the basal bodies and nucleus nemes of heterokont Xagellates led him further to conclude (Brugerolle and Mignot, 1989). The number of Xagella diVers that the slopalinids are relatives of the heterokont algae, in between the two genera belonging to the family: Protero- other words that they belong among stramenopiles. Phyloge- monas, the commensal of urodelans, lizards, and rodents, has netic analysis of Silberman et al. (1996) not only conWrmed two Xagella, whereas Karotomorpha, the commensal of frogs that Proteromonas is a stramenopile, but also showed that its and other amphibians, has four Xagella.
    [Show full text]
  • The Revised Classification of Eukaryotes
    Published in Journal of Eukaryotic Microbiology 59, issue 5, 429-514, 2012 which should be used for any reference to this work 1 The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany, and jDepartment of Parasitology, Charles University, Prague, 128 43, Praha 2, Czech
    [Show full text]
  • Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment
    [Show full text]
  • Kingdom Protozoa and Its 18Phyla
    MICROBIOLOGICAL REVIEWS, Dec. 1993, p. 953-994 Vol. 57, No. 4 0146-0749/93/040953-42$02.00/0 Copyright © 1993, American Society for Microbiology Kingdom Protozoa and Its 18 Phyla T. CAVALIER-SMITH Evolutionary Biology Program of the Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 INTRODUCTION .......................................................................... 954 Changing Views of Protozoa as a Taxon.......................................................................... 954 EXCESSIVE BREADTH OF PROTISTA OR PROTOCTISTA ......................................................955 DISTINCTION BETWEEN PROTOZOA AND PLANTAE............................................................956 DISTINCTION BETWEEN PROTOZOA AND FUNGI ................................................................957 DISTINCTION BETWEEN PROTOZOA AND CHROMISTA .......................................................960 DISTINCTION BETWEEN PROTOZOA AND ANIMALIA ..........................................................962 DISTINCTION BETWEEN PROTOZOA AND ARCHEZOA.........................................................962 Transitional Problems in Narrowing the Definition of Protozoa ....................................................963 Exclusion of Parabasalia from Archezoa .......................................................................... 964 Exclusion of Entamoebia from Archezoa .......................................................................... 964 Are Microsporidia
    [Show full text]
  • Insights from Molecular Ecology of Freshwater Eukaryotes
    Proc. R. Soc. B (2005) 272, 2073–2081 doi:10.1098/rspb.2005.3195 Published online 17 August 2005 The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes Jan Sˇ lapeta, David Moreira and Purificacio´nLo´pez-Garcı´a* Unite´ d’Ecologie, Syste´matique et E´ volution, UMR CNRS 8079, Universite´ Paris-Sud, 91405 Orsay Cedex, France Classical studies on protist diversity of freshwater environments worldwide have led to the idea that most species of microbial eukaryotes are known. One exemplary case would be constituted by the ciliates, which have been claimed to encompass a few thousands of ubiquitous species, most of them already described. Recently, molecular methods have revealed an unsuspected protist diversity, especially in oceanic as well as some extreme environments, suggesting the occurrence of a hidden diversity of eukaryotic lineages. In order to test if this holds also for freshwater environments, we have carried out a molecular survey of small subunit ribosomal RNA genes in water and sediment samples of two ponds, one oxic and another suboxic, from the same geographic area. Our results show that protist diversity is very high. The majority of phylotypes affiliated within a few well established eukaryotic kingdoms or phyla, including alveolates, cryptophytes, heterokonts, Cercozoa, Centroheliozoa and haptophytes, although a few sequences did not display a clear taxonomic affiliation. The diversity of sequences within groups was very large, particularly that of ciliates, and a number of them were very divergent from known species, which could define new intra-phylum groups. This suggests that, contrary to current ideas, the diversity of freshwater protists is far from being completely described.
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    PROF. SINA ADL (Orcid ID : 0000-0001-6324-6065) PROF. DAVID BASS (Orcid ID : 0000-0002-9883-7823) DR. CÉDRIC BERNEY (Orcid ID : 0000-0001-8689-9907) DR. PACO CÁRDENAS (Orcid ID : 0000-0003-4045-6718) DR. IVAN CEPICKA (Orcid ID : 0000-0002-4322-0754) DR. MICAH DUNTHORN (Orcid ID : 0000-0003-1376-4109) PROF. BENTE EDVARDSEN (Orcid ID : 0000-0002-6806-4807) DR. DENIS H. LYNN (Orcid ID : 0000-0002-1554-7792) DR. EDWARD A.D MITCHELL (Orcid ID : 0000-0003-0358-506X) PROF. JONG SOO PARK (Orcid ID : 0000-0001-6253-5199) DR. GUIFRÉ TORRUELLA (Orcid ID : 0000-0002-6534-4758) Article DR. VASILY V. ZLATOGURSKY (Orcid ID : 0000-0002-2688-3900) Article type : Original Article Corresponding author mail id: [email protected] Adl et al.---Classification of Eukaryotes Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla, David Bassb,c, Christopher E. Laned, Julius Lukeše,f, Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj, Matthew W. Brownk,l, Fabien Burkim, Paco Cárdenasn, Ivan Čepičkao, Ludmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s, Bente Edvardsent, Yana Eglitu, Laure Guillouv, Vladimír Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Sergey Karpovh, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,aa, Daniel J. G. Lahrab, Enrique Laraac,ad, Line Le Gallae, Denis H. Lynnaf,ag, David G. Mannah, Ramon Massana i Moleraq, Edward A. D. Mitchellac,ai , Christine Morrowaj, Jong Soo Parkak, Jan W. Pawlowskial, Martha J. Powellam, Daniel J. Richteran, Sonja Rueckertao, Lora Shadwickap, Satoshi Shimanoaq, Frederick W. Spiegelap, Guifré Torruella i Cortesar, Noha Youssefas, Vasily Zlatogurskyh,at, Qianqian Zhangau,av.
    [Show full text]
  • Understanding the Evolution of the Membrane Trafficking System in Diverse Eukaryotes Through Comparative Genomics and Transcriptomics by Emily Katherine Herman
    Understanding the evolution of the membrane trafficking system in diverse eukaryotes through comparative genomics and transcriptomics by Emily Katherine Herman A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology University of Alberta © Emily Katherine Herman, 2018 Abstract Single-celled organisms represent the majority of eukaryotic diversity. Recent advances in sequencing technologies have been critical for understanding the evolutionary biology and cell biology of microbial eukaryotes. Comparative genomic analyses have shown that many genes that underlie fundamental eukaryotic features (e.g. membrane trafficking, cytoskeleton) are conserved across the diversity of eukaryotes, suggesting that they have also maintained a similar function. However, many microbial eukaryotes have specialized lifestyles or behaviours, the evolutionary pressures of which may be observed in changes to gene content in a lineage; in either gene family expansion, divergence, or loss. Building on analyses of gene presence and absence, gene expression changes in relation to a specific cellular behaviour gives even more insight into the underlying cell biology of that process. The focus of this thesis is the membrane trafficking system, specifically the cellular machinery that underlies intracellular transport, endocytosis, and exocytosis. In the first Results chapter, comparative genomics is used to identify membrane trafficking components in three related organisms, one of which is free-living, while the other two are gut-associated endobionts and/or parasites. The purpose was to determine whether host-association contributes to sculpting of the trafficking system, as is the case in other eukaryotic parasites. In the second Results chapter, comparative genomics and transcriptomics are used to study how membrane trafficking underlies the process of encystation in the gut pathogens Entamoeba invadens and E.
    [Show full text]
  • Taxon-Rich Multigene Phylogenetic Analyses Resolve the Phylogenetic Relationship Among Deep-Branching Stramenopiles 3
    Protist, Vol. 170, 125682, November 2019 http://www.elsevier.de/protis Published online date 5 September 2019 ORIGINAL PAPER Taxon-rich Multigene Phylogenetic Analyses Resolve the Phylogenetic Relationship Among Deep-branching Stramenopiles a,b c,d c,1 Rabindra Thakur , Takashi Shiratori , and Ken-ichiro Ishida a Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan b Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA c Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan d Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan Submitted August 20, 2018; Accepted August 28, 2019 Monitoring Editor: Hervé Philippe Stramenopiles are one of the major eukaryotic assemblages. This group comprises a wide range of species including photosynthetic unicellular and multicellular algae, fungus-like osmotrophic organ- isms and many free-living phagotrophic flagellates. However, the phylogeny of the Stramenopiles, especially relationships among deep-branching heterotrophs, has not yet been resolved because of a lack of adequate transcriptomic data for representative lineages. In this study, we performed multigene phylogenetic analyses of deep-branching Stramenopiles with improved taxon sampling. We sequenced transcriptomes of three deep-branching Stramenopiles: Incisomonas marina, Pseudophyl- lomitus vesiculosus and Platysulcus tardus. Phylogenetic analyses using 120 protein-coding genes and 56 taxa indicated that Pl. tardus is sister to all other Stramenopiles while Ps. vesiculosus is sister to MAST-4 and form a robust clade with the Labyrinthulea. The resolved phylogenetic relationships of deep-branching Stramenopiles provide insights into the ancestral traits of the Stramenopiles.
    [Show full text]
  • A New Deep-Branching Stramenopile, Platysulcus Tardus Gen. Nov., Sp. Nov
    A New Deep-branching Stramenopile, Platysulcus tardus gen. nov., sp. nov. 著者 Shiratori Takashi, Nakayama Takeshi, Ishida Ken-ichiro journal or Protist publication title volume 166 number 3 page range 337-348 year 2015-07 権利 (C) 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4 .0/ URL http://hdl.handle.net/2241/00148461 doi: 10.1016/j.protis.2015.05.001 Creative Commons : 表示 - 非営利 - 改変禁止 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja 1 A new deep-branching stramenopile, Platysulcus tardus gen. nov., sp. nov. 2 3 Takashi Shiratoria, Takeshi Nakayamab, and Ken-ichiro Ishidab,1 4 5 aGraduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 6 Ibaraki 305-8572, Japan; 7 bFaculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 8 305-8572, Japan 9 10 Running title: A new deep-branching stramenopile 11 1 Corresponding Author: FAX: +81 298 53 4533 E-mail: [email protected] (K. Ishida) 1 A novel free-living heterotrophic stramenopile, Platysulcus tardus gen. nov., sp. nov. was 2 isolated from sedimented detritus on a seaweed collected near the Ngeruktabel Island, 3 Palau. P. tardus is a gliding flagellate with tubular mastigonemes on the anterior short 4 flagellum and a wide, shallow ventral furrow. Although the flagellar apparatus of P. tardus 5 is typical of stramenopiles, it shows novel ultrastructural combinations that are not applied 6 to any groups of heterotrophic stramenopiles. Phylogenetic analysis using SSU rRNA genes 7 revealed that P.
    [Show full text]
  • Protozoologica (1994) 33: 1 - 51
    Acta Protozoologica (1994) 33: 1 - 51 ¿ i U PROTOZOOLOGICA k ' $ ; /M An Interim Utilitarian (MUser-friendlyM) Hierarchical Classification and Characterization of the Protists John O. CORLISS Albuquerque, N ew Mexico, USA Summary. Continuing studies on the ultrastructure and the molecular biology of numerous species of protists are producing data of importance in better understanding the phylogenetic interrelationships of the many morphologically and genetically diverse groups involved. Such information, in turn, makes possible the production of new systems of classification, which are sorely needed as the older schemes become obsolete. Although it has been clear for several years that a Kingdom PROTISTA can no longer be justified, no one has offered a single and compact hierarchical classification and description of all high-level taxa of protists as widely scattered members of the entire eukaryotic assemblage of organisms. Such a macrosystem is proposed here, recognizing Cavalier-Smith’s six kingdoms of eukaryotes, five of which contain species of protists. Some 34 phyla and 83 classes are described, with mention of included orders and with listings of many representative genera. An attempt is made, principally through use of well-known names and authorships of the described taxa, to relate this new classification to past systematic treatments of protists. At the same time, the system will provide a bridge to the more refined phylogenetically based arrangements expected by the turn of the century as future data (particularly molecular) make them possible. The present interim scheme should be useful to students and teachers, information retrieval systems, and general biologists, as well as to the many professional phycologists, mycologists, protozoologists, and cell and evolutionary biologists who are engaged in research on diverse groups of the protists, those fascinating "lower" eukaryotes that (with important exceptions) are mainly microscopic in size and unicellular in structure.
    [Show full text]
  • A New Deep-Branching Stramenopile, Platysulcus Tardus Gen. Nov., Sp. Nov. 1 2 Takashi Shiratoria, Takeshi Nakayamab, and Ken-Ich
    1 A new deep-branching stramenopile, Platysulcus tardus gen. nov., sp. nov. 2 3 Takashi Shiratoria, Takeshi Nakayamab, and Ken-ichiro Ishidab,1 4 5 aGraduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 6 Ibaraki 305-8572, Japan; 7 bFaculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 8 305-8572, Japan 9 10 Running title: A new deep-branching stramenopile 11 1 Corresponding Author: FAX: +81 298 53 4533 E-mail: [email protected] (K. Ishida) 1 A novel free-living heterotrophic stramenopile, Platysulcus tardus gen. nov., sp. nov. was 2 isolated from sedimented detritus on a seaweed collected near the Ngeruktabel Island, 3 Palau. P. tardus is a gliding flagellate with tubular mastigonemes on the anterior short 4 flagellum and a wide, shallow ventral furrow. Although the flagellar apparatus of P. tardus 5 is typical of stramenopiles, it shows novel ultrastructural combinations that are not applied 6 to any groups of heterotrophic stramenopiles. Phylogenetic analysis using SSU rRNA genes 7 revealed that P. tardus formed a clade with stramenopiles with high statistical support. 8 However, P. tardus did not form a subclade with any species or environmental sequences 9 within the stramenopiles, and no close relative was suggested by the phylogenetic analysis. 10 Therefore, we concluded that P. tardus should be treated as a new genus and species of 11 stramenopiles. 12 13 Key words: flagellar apparatus; MAST; phylogenetic analysis; stramenopiles; ultrastructure 14 1 Introduction 2 Stramenopiles are a major eukaryotic assemblage that is characterized by tripartite flagellar 3 hairs (tubular mastigonemes) on the anterior flagellum and a unique flagellar apparatus 4 consisting of four microtubular roots (Andersen 1991; Karpov et al.
    [Show full text]