Geometrical and Percolative Properties of Spatially Correlated Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perturbed Bessel Processes Séminaire De Probabilités (Strasbourg), Tome 32 (1998), P
SÉMINAIRE DE PROBABILITÉS (STRASBOURG) R.A. DONEY JONATHAN WARREN MARC YOR Perturbed Bessel processes Séminaire de probabilités (Strasbourg), tome 32 (1998), p. 237-249 <http://www.numdam.org/item?id=SPS_1998__32__237_0> © Springer-Verlag, Berlin Heidelberg New York, 1998, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Perturbed Bessel Processes R.A.DONEY, J.WARREN, and M.YOR. There has been some interest in the literature in Brownian Inotion perturbed at its maximum; that is a process (Xt ; t > 0) satisfying (0.1) , where Mf = XS and (Bt; t > 0) is Brownian motion issuing from zero. The parameter a must satisfy a 1. For example arc-sine laws and Ray-Knight theorems have been obtained for this process; see Carmona, Petit and Yor [3], Werner [16], and Doney [7]. Our initial aim was to identify a process which could be considered as the process X conditioned to stay positive. This new process behaves like the Bessel process of dimension three except when at its maximum and we call it a perturbed three-dimensional Bessel process. We establish Ray-Knight theorems for the local times of this process, up to a first passage time and up to infinity (see Theorem 2.3), and observe that these descriptions coincide with those of the local times of two processes that have been considered in Yor [18]. -
Abstract We Survey the Published Work of Harry Kesten in Probability Theory, with Emphasis on His Contributions to Random Walks
Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend April 8, 2020 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science. Few mathematicians have contributed as much during this period as Harry Kesten. Following a turbulent childhood (see [59]), Harry studied mathematics with David van Dantzig and Jan Hemelrijk in Amsterdam, where in 1955 he attended a lecture by Mark Kac entitled \Some probabilistic aspects of potential theory". This encounter appears to have had a decisive effect, in that Harry moved in 1956 to Cornell University to work with Kac. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
Patterns in Random Walks and Brownian Motion
Patterns in Random Walks and Brownian Motion Jim Pitman and Wenpin Tang Abstract We ask if it is possible to find some particular continuous paths of unit length in linear Brownian motion. Beginning with a discrete version of the problem, we derive the asymptotics of the expected waiting time for several interesting patterns. These suggest corresponding results on the existence/non-existence of continuous paths embedded in Brownian motion. With further effort we are able to prove some of these existence and non-existence results by various stochastic analysis arguments. A list of open problems is presented. AMS 2010 Mathematics Subject Classification: 60C05, 60G17, 60J65. 1 Introduction and Main Results We are interested in the question of embedding some continuous-time stochastic processes .Zu;0Ä u Ä 1/ into a Brownian path .BtI t 0/, without time-change or scaling, just by a random translation of origin in spacetime. More precisely, we ask the following: Question 1 Given some distribution of a process Z with continuous paths, does there exist a random time T such that .BTCu BT I 0 Ä u Ä 1/ has the same distribution as .Zu;0Ä u Ä 1/? The question of whether external randomization is allowed to construct such a random time T, is of no importance here. In fact, we can simply ignore Brownian J. Pitman ()•W.Tang Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720-3860, USA e-mail: [email protected]; [email protected] © Springer International Publishing Switzerland 2015 49 C. Donati-Martin et al. -
Bessel Process, Schramm-Loewner Evolution, and Dyson Model
Bessel process, Schramm-Loewner evolution, and Dyson model – Complex Analysis applied to Stochastic Processes and Statistical Mechanics – ∗ Makoto Katori † 24 March 2011 Abstract Bessel process is defined as the radial part of the Brownian motion (BM) in the D-dimensional space, and is considered as a one-parameter family of one- dimensional diffusion processes indexed by D, BES(D). First we give a brief review of BES(D), in which D is extended to be a continuous positive parameter. It is well-known that D = 2 is the critical dimension such that, when D D (resp. c ≥ c D < Dc), the process is transient (resp. recurrent). Bessel flow is a notion such that we regard BES(D) with a fixed D as a one-parameter family of initial value x> 0. There is another critical dimension Dc = 3/2 and, in the intermediate values of D, Dc <D<Dc, behavior of Bessel flow is highly nontrivial. The dimension D = 3 is special, since in addition to the aspect that BES(3) is a radial part of the three-dimensional BM, it has another aspect as a conditional BM to stay positive. Two topics in probability theory and statistical mechanics, the Schramm-Loewner evolution (SLE) and the Dyson model (i.e., Dyson’s BM model with parameter β = 2), are discussed. The SLE(D) is introduced as a ‘complexification’ of Bessel arXiv:1103.4728v1 [math.PR] 24 Mar 2011 flow on the upper-half complex-plane, which is indexed by D > 1. It is explained (D) (D) that the existence of two critical dimensions Dc and Dc for BES makes SLE have three phases; when D D the SLE(D) path is simple, when D <D<D ≥ c c c it is self-intersecting but not dense, and when 1 < D D it is space-filling. -
A Two-Dimensional Oblique Extension of Bessel Processes Dominique Lepingle
A two-dimensional oblique extension of Bessel processes Dominique Lepingle To cite this version: Dominique Lepingle. A two-dimensional oblique extension of Bessel processes. 2016. hal-01164920v2 HAL Id: hal-01164920 https://hal.archives-ouvertes.fr/hal-01164920v2 Preprint submitted on 22 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A TWO-DIMENSIONAL OBLIQUE EXTENSION OF BESSEL PROCESSES Dominique L´epingle1 Abstract. We consider a Brownian motion forced to stay in the quadrant by an electro- static oblique repulsion from the sides. We tackle the question of hitting the corner or an edge, and find product-form stationary measures under a certain condition, which is reminiscent of the skew-symmetry condition for a reflected Brownian motion. 1. Introduction In the present paper we study existence and properties of a new process with values in the nonnegative quadrant S = R+ ×R+ where R+ := [0; 1). It may be seen as a two-dimensional extension of a usual Bessel process. It is a two-dimensional Brownian motion forced to stay in the quadrant by electrostatic repulsive forces, in the same way as in the one-dimensional case where a Brownian motion which is prevented from becoming negative by an electrostatic drift becomes a Bessel process. -
Divergence of Shape Fluctuation for General Distributions in First-Passage Percolation
DIVERGENCE OF SHAPE FLUCTUATION FOR GENERAL DISTRIBUTIONS IN FIRST-PASSAGE PERCOLATION SHUTA NAKAJIMA d Abstract. We study the shape fluctuation in the first-passage percolation on Z . It is known that it diverges when the distribution obeys Bernoulli in [Yu Zhang. The divergence of fluctuations for shape in first passage percolation. Probab. Theory. Related. Fields. 136(2) 298–320, 2006]. In this paper, we extend the result to general distributions. 1. Introduction First-passage percolation is a random growth model, which was first introduced by Hammersley and Welsh in 1965. The model is defined as follows. The vertices are the d d elements of Z . Let us denote the set edges by E : d d E = ffv; wgj v; w 2 Z ; jv − wj1 = 1g; Pd where we set jv − wj1 = i=1 jvi − wij for v = (v1; ··· ; vd), w = (w1; ··· ; wd). Note that we consider non-oriented edges in this paper, i.e., fv; wg = fw; vg and we sometimes d regard fv; wg as a subset of Z with a slight abuse of notation. We assign a non-negative d random variable τe on each edge e 2 E , called the passage time of the edge e. The collec- tion τ = fτege2Ed is assumed to be independent and identically distributed with common distribution F . d A path γ is a finite sequence of vertices (x1; ··· ; xl) ⊂ Z such that for any i 2 d f1; ··· ; l − 1g, fxi; xi+1g 2 E . It is customary to regard a path as a subset of edges as follows: given an edge e 2 Ed, we write e 2 γ if there exists i 2 f1 ··· ; l − 1g such that e = fxi; xi+1g. -
Bessel Processes, Stochastic Volatility, and Timer Options
Mathematical Finance, Vol. 26, No. 1 (January 2016), 122–148 BESSEL PROCESSES, STOCHASTIC VOLATILITY, AND TIMER OPTIONS CHENXU LI Guanghua School of Management, Peking University Motivated by analytical valuation of timer options (an important innovation in realized variance-based derivatives), we explore their novel mathematical connection with stochastic volatility and Bessel processes (with constant drift). Under the Heston (1993) stochastic volatility model, we formulate the problem through a first-passage time problem on realized variance, and generalize the standard risk-neutral valuation theory for fixed maturity options to a case involving random maturity. By time change and the general theory of Markov diffusions, we characterize the joint distribution of the first-passage time of the realized variance and the corresponding variance using Bessel processes with drift. Thus, explicit formulas for a useful joint density related to Bessel processes are derived via Laplace transform inversion. Based on these theoretical findings, we obtain a Black–Scholes–Merton-type formula for pricing timer options, and thus extend the analytical tractability of the Heston model. Several issues regarding the numerical implementation are briefly discussed. KEY WORDS: timer options, volatility derivatives, realized variance, stochastic volatility models, Bessel processes. 1. INTRODUCTION Over the past decades, volatility has become one of the central issues in financial mod- eling. Both the historic volatility derived from time series of past market prices and the implied volatility derived from the market price of a traded derivative (in particular, an option) play important roles in derivatives valuation. In addition to index or stock options, a variety of volatility (or variance) derivatives, such as variance swaps, volatility swaps, and options on VIX (the Chicago board of exchange volatility index), are now actively traded in the financial security markets. -
Asymptotics of Query Strategies Over a Sensor Network
Asymptotics of Query Strategies over a Sensor Network Sanjay Shakkottai∗ February 11, 2004 Abstract We consider the problem of a user querying for information over a sensor network, where the user does not have prior knowledge of the location of the information. We consider three information query strategies: (i) a Source-only search, where the source (user) tries to locate the destination by initiating query which propagates as a continuous time random walk (Brownian motion); (ii) a Source and Receiver Driven “Sticky” Search, where both the source and the destination send a query or an advertisement, and these leave a “sticky” trail to aid in locating the destination; and (iii) where the destination information is spatially cached (i.e., repeated over space), and the source tries to locate any one of the caches. After a random interval of time with average t, if the information is not located, the query times-out, and the search is unsuccessful. For a source-only search, we show that the probability that a query is unsuccessful decays as (log(t))−1. When both the source and the destination send queries or advertisements, we show that the probability that a query is unsuccessful decays as t−5/8. Further, faster polynomial decay rates can be achieved by using a finite number of queries or advertisements. Finally, when a spatially periodic cache is employed, we show that the probability that a query is unsuccessful decays no faster than t−1. Thus, we can match the decay rates of the source and the destination driven search with that of a spatial caching strategy by using an appropriate number of queries. -
Bessel Spdes with General Dirichlet Boundary Conditions Henri Elad Altman
Bessel SPDEs with general Dirichlet boundary conditions Henri Elad Altman To cite this version: Henri Elad Altman. Bessel SPDEs with general Dirichlet boundary conditions. 2019. hal-02264627 HAL Id: hal-02264627 https://hal.archives-ouvertes.fr/hal-02264627 Preprint submitted on 7 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BESSEL SPDES WITH GENERAL DIRICHLET BOUNDARY CONDITIONS HENRI ELAD ALTMAN Abstract. We generalise the integration by parts formulae obtained in [7] to Bessel bridges on [0, 1] with arbitrary boundary values, as well as Bessel processes with arbitrary initial conditions. This allows us to write, formally, the corresponding dynamics using renormalised local times, thus extending the Bessel SPDEs of [7] to general Dirichlet boundary conditions. We also prove a dynamical result for the case of dimension 2, by providing a weak construction of the gradient dynamics corresponding to a 2-dimensional Bessel bridge. 1. Introduction 1.1. Bessel SPDEs. The purpose of this paper is to further extend the results obtained recently in [7], and which introduced Bessel SPDEs of dimension smaller than 3. Bessel processes are a one-parameter family of nonnegative real-valued diffusions which play a central role in various fields, ranging from statistical mechanics to finance. -
Supremum Distribution of Bessel Process of Drifting Brownian Motion
PROBABILITY AND MATHEMATICAL STATISTICS Vol. 35, Fasc. 2 (2015), pp. 201–222 SUPREMUM DISTRIBUTION OF BESSEL PROCESS OF DRIFTING BROWNIAN MOTION BY ∗ ANDRZEJ P Y C´ (WROCŁAW), GRZEGORZ S E R A F I N (WROCŁAW), AND TOMASZ ZAK˙ (WROCŁAW) (1) (2) (3) Abstract. Let us assume that (Bt ;Bt ;Bt + µt) is a three- dimensional Brownian motion with drift µ, starting at the origin. Then ∥ (1) (2) (3) ∥ Xt = (Bt ;Bt ;Bt + µt) , its distance from the starting point, is a diffusion with many applications. We investigate the supremum of (Xt), give an infinite-series formula for its distribution function and an exact esti- mate of the density of this distribution in terms of elementary functions. 2010 AMS Mathematics Subject Classification: Primary: 60J60; Secondary: 60G70. Key words and phrases: Drifting Brownian motion, Bessel process, supremum distribution, estimates of theta function. 1. INTRODUCTION In his famous paper [10] (see also [9], p. 436) David Williams showed how one can decompose the paths of a transient one-dimensional diffusion at its maximum (or minimum). One of the best-known examples of such decomposition is that of B(t) + µt, a Brownian motion with a positive drift µ, as a Brownian motion with a negative drift B(t) − µt and a diffusion with generator ∆µ, 1 d2 d (1.1) ∆ = + µ coth(µx) : µ 2 dx2 dx Namely, for µ > 0 let B(t) − µt be a Brownian motion with constant drift −µ, Zt a diffusion with generator (1.1), started at zero, and let γ be a random variable with 1 exponential distribution with parameter 2µ . -
Models Beyond the Dirichlet Process
Models beyond the Dirichlet process Antonio Lijoi Igor Prünster No. 129 December 2009 www.carloalberto.org/working_papers © 2009 by Antonio Lijoi and Igor Prünster. Any opinions expressed here are those of the authors and not those of the Collegio Carlo Alberto. Models beyond the Dirichlet process Antonio Lijoi1 and Igor Prunster¨ 2 1 Dipartimento Economia Politica e Metodi Quantitatavi, Universit`adegli Studi di Pavia, via San Felice 5, 27100 Pavia, Italy and CNR{IMATI, via Bassini 15, 20133 Milano. E-mail: [email protected] 2 Dipartimento di Statistica e Matematica Applicata, Collegio Carlo Alberto and ICER, Universit`a degli Studi di Torino, Corso Unione Sovietica 218/bis, 10134 Torino, Italy. E-mail: [email protected] September 2009 Abstract. Bayesian nonparametric inference is a relatively young area of research and it has recently undergone a strong development. Most of its success can be explained by the considerable degree of flexibility it ensures in statistical modelling, if compared to parametric alternatives, and by the emergence of new and efficient simulation techniques that make nonparametric models amenable to concrete use in a number of applied sta- tistical problems. Since its introduction in 1973 by T.S. Ferguson, the Dirichlet process has emerged as a cornerstone in Bayesian nonparametrics. Nonetheless, in some cases of interest for statistical applications the Dirichlet process is not an adequate prior choice and alternative nonparametric models need to be devised. In this paper we provide a review of Bayesian nonparametric models that go beyond the Dirichlet process. 1 Introduction Bayesian nonparametric inference is a relatively young area of research and it has recently under- gone a strong development.