Wria 44/50 Final Phase 2 Basin Assessment April 2003

Total Page:16

File Type:pdf, Size:1020Kb

Wria 44/50 Final Phase 2 Basin Assessment April 2003 WRIA 44/50 FINAL PHASE 2 BASIN ASSESSMENT APRIL 2003 Prepared for Foster Creek Conservation District 103 North Baker Waterville, WA 98858 Prepared by Pacific Groundwater Group With Montgomery Water Group, Inc. R2 Resource Consultants WRIA 44/50 BASIN ASSESSMENT TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY ..................................................................................................................................... 1 1.1 GEOGRAPHY .......................................................................................................................................................... 1 1.2 HYDROLOGY ......................................................................................................................................................... 1 1.3 WATER QUANTITY ................................................................................................................................................ 1 1.3.1 Water Availability ............................................................................................................................................ 2 1.3.2 Water Rights .................................................................................................................................................... 2 1.4 HABITAT CONDITIONS........................................................................................................................................... 2 1.5 WATER QUALITY................................................................................................................................................... 3 2.0 INTRODUCTION ................................................................................................................................................... 6 2.1 PURPOSE AND SCOPE............................................................................................................................................. 6 2.2 REGULATORY FRAMEWORK .................................................................................................................................. 6 2.3 WATERSHEDS AND WRIAS ................................................................................................................................... 7 3.0 HYDROGEOLOGY AND GROUNDWATER FLOW ....................................................................................... 8 3.1 HYDROLOGIC CONCEPTUAL MODEL ..................................................................................................................... 8 4.0 WATER RIGHTS ................................................................................................................................................. 10 4.1 CLAIMS................................................................................................................................................................ 10 4.2 EXEMPT WELLS................................................................................................................................................... 11 4.3 DATA SOURCES AND DATA REDUCTION.............................................................................................................. 11 4.4 WATER RIGHTS ALLOCATIONS IN WRIAS 44 AND 50......................................................................................... 11 5.0 WATER USE ......................................................................................................................................................... 13 5.1 WATER USE IN WRIAS 44 AND 50...................................................................................................................... 13 5.2 PROJECTED WATER DEMAND.............................................................................................................................. 14 6.0 RECHARGE ANALYSES.................................................................................................................................... 16 6.1 GROUNDWATER RECHARGE ................................................................................................................................16 6.2 SURFACE WATER RECHARGE - DISCHARGE ANALYSIS ....................................................................................... 16 6.2.1 Foster Creek................................................................................................................................................... 17 6.2.2 Rock Island Creek.......................................................................................................................................... 17 6.2.3 Douglas Creek/Moses Coulee........................................................................................................................ 17 6.2.4 McCartney Creek........................................................................................................................................... 17 6.2.5 Rattlesnake Creek .......................................................................................................................................... 17 6.2.6 Pine Canyon Creek ........................................................................................................................................ 17 6.2.7 Coyote Creek.................................................................................................................................................. 17 6.2.8 Sand Canyon Creek........................................................................................................................................ 17 7.0 SURFACE WATER ANALYSES........................................................................................................................ 18 7.1 STREAMFLOW MONITORING ............................................................................................................................... 18 7.2 ESTIMATES OF STREAMFLOW PRESENT .............................................................................................................. 19 7.3 BASEFLOW AND SURFACE WATER RUNOFF ESTIMATES FOR WRIAS 44 AND 50 STREAMS............................... 19 7.4 WATER YEAR 2002 PRECIPITATION COMPARISON .............................................................................................. 19 7.5 WATER YEAR 2002 STREAMFLOW COMPARED TO HISTORIC RECORDS .............................................................. 19 7.6 ESTIMATION OF LONG-TERM AVERAGE FLOW.................................................................................................... 20 8.0 WATER BALANCE ............................................................................................................................................. 21 8.1 COMPARISON WITH WATER USAGE..................................................................................................................... 21 8.2 WATER RIGHTS COMPARISON ............................................................................................................................. 21 APRIL 2003 | PACIFIC GROUNDWATER GROUP | PAGE I WRIA 44/50 BASIN ASSESSMENT 9.0 WATER QUALITY .............................................................................................................................................. 23 9.1 WATER QUALITY STANDARDS ............................................................................................................................ 23 9.2 SUMMARY OF EXISTING DATA ............................................................................................................................ 23 9.2.1 Rock Island .................................................................................................................................................... 23 9.2.2 Douglas Creek ............................................................................................................................................... 23 9.2.3 Coyote Creek.................................................................................................................................................. 24 9.3 WATER QUALITY DATA COLLECTION ................................................................................................................. 25 9.3.1 Chemical Data Results................................................................................................................................... 25 9.3.2 Biological Monitoring Results ....................................................................................................................... 27 9.3.3 Physical Monitoring Results .......................................................................................................................... 28 10.0 HABITAT............................................................................................................................................................... 30 10.1 HISTORIC HABITAT IDENTIFICATION ................................................................................................................... 30 10.1.1 Stream Channel Characterization............................................................................................................. 30 10.1.2 Riparian Habitat ....................................................................................................................................... 34 10.2 BASELINE HABITAT DATA COLLECTION ............................................................................................................. 37 10.2.1 Anadromous Fish Access .........................................................................................................................
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    RECONNAISSANCE SURFICIAL GEOLOGIC MAPPING OF THE LATE CENOZOIC SEDIMENTS OF THE COLUMBIA BASIN, WASHINGTON by James G. Rigby and Kurt Othberg with contributions from Newell Campbell Larry Hanson Eugene Kiver Dale Stradling Gary Webster Open File Report 79-3 September 1979 State of Washington Department of Natural Resources Division of Geology and Earth Resources Olympia, Washington CONTENTS Introduction Objectives Study Area Regional Setting 1 Mapping Procedure 4 Sample Collection 8 Description of Map Units 8 Pre-Miocene Rocks 8 Columbia River Basalt, Yakima Basalt Subgroup 9 Ellensburg Formation 9 Gravels of the Ancestral Columbia River 13 Ringold Formation 15 Thorp Gravel 17 Gravel of Terrace Remnants 19 Tieton Andesite 23 Palouse Formation and Other Loess Deposits 23 Glacial Deposits 25 Catastrophic Flood Deposits 28 Background and previous work 30 Description and interpretation of flood deposits 35 Distinctive geomorphic features 38 Terraces and other features of undetermined origin 40 Post-Pleistocene Deposits 43 Landslide Deposits 44 Alluvium 45 Alluvial Fan Deposits 45 Older Alluvial Fan Deposits 45 Colluvium 46 Sand Dunes 46 Mirna Mounds and Other Periglacial(?) Patterned Ground 47 Structural Geology 48 Southwest Quadrant 48 Toppenish Ridge 49 Ah tanum Ridge 52 Horse Heaven Hills 52 East Selah Fault 53 Northern Saddle Mountains and Smyrna Bench 54 Selah Butte Area 57 Miscellaneous Areas 58 Northwest Quadrant 58 Kittitas Valley 58 Beebe Terrace Disturbance 59 Winesap Lineament 60 Northeast Quadrant 60 Southeast Quadrant 61 Recommendations 62 Stratigraphy 62 Structure 63 Summary 64 References Cited 66 Appendix A - Tephrochronology and identification of collected datable materials 82 Appendix B - Description of field mapping units 88 Northeast Quadrant 89 Northwest Quadrant 90 Southwest Quadrant 91 Southeast Quadrant 92 ii ILLUSTRATIONS Figure 1.
    [Show full text]
  • Comparison of Acoustic and PIT Tagged Juvenile Chinook, Steelhead and Sockeye Salmon (Oncorhynchus, Spp.) Passing Dams on the Columbia River, USA
    Spedicato, M.T.; Lembo, G.; Marmulla, G. (eds.) 275 Aquatic telemetry: advances and applications. Proceedings of the Fifth Conference on Fish Telemetry held in Europe. Ustica, Italy, 9-13 June 2003. Rome, FAO/COISPA. 2005. 295p. Comparison of acoustic and PIT tagged juvenile Chinook, Steelhead and Sockeye Salmon (Oncorhynchus, spp.) passing dams on the Columbia River, USA T.W. Steig*1, J.R. Skalski2, and B.H. Ransom1 1Hydroacoustic Technology, Inc. 715 N.E. Northlake Way, Seattle, WA 98105 U.S.A. Tel.: (206) 633-3383; Fax: (206) 633- 5912. *Correspondig Author, e-mail: [email protected] 2Columbia Basin Research, School of Aquatic and Fishery Sciences, University of Washington Seattle, WA, U.S.A. Key words: acoustic tags, PIT tags, fish behaviour, fish movement, salmon smolt survival. Abstract The purpose of the study was to compare migration behaviour and survival of acoustic and passive integrated transponder (PIT) tagged juvenile salmonids passing dams on the Columbia River, Washington State, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha Walbaum 1792), steelhead (Oncorhynchus mykiss Walbaum 1792), sockeye (Oncorhynchus nerka Walbaum 1792), and sub-yearling chinook smolts were individually implanted with either acoustic or PIT tags and monitored at Rocky Reach and Rock Island dams dur- ing spring and summer 2002. Travel times and detection rates were compared for acoustic (“A” tag weight 1.0 g and “E” tag weight 1.5 g) and PIT (tag weight 0.06 g) tagged fish released upstream of Rocky Reach Dam and detected at a Surface Collector Bypass Channel and further downstream at the Rock Island Dam project.
    [Show full text]
  • Columbia River System Operation Review Final Environmental Impact Statement
    Columbia River System Operation Review Final Environmental Impact Statement AppendixL Soils, Geology and Groundwater 11""I ,11 ofus Engineers Armv Corps ".'1 North Pacific Division DOEIEIS-O I 70 November 1995 PUBLIC INVOLVEMENT IN THE SOR PROCESS The Bureau of Reclamation, Corps of Engineers, and Bonneville Power Administration wish to thank those who reviewed the Columbia River System Operation Review (SOR) Draft EIS and appendices for their comments. Your comments have provided valuable public, agency. and tribal input to the SOR NEPA process, Throughout the SOR. we have made a continuing effort to keep the public informed and involved. Fourteen public scoping meetings were held in 1990. A series of public roundtables was conducted in November 1991 to provide an update on the status of SOR studies. Tbe lead agencies went back 10 most of the 14 communities in 1992 with 10 initial system operating strategies developed from the screening process. From those meetings and other consultations, seven SOS alternatives (with options) were developed and subjected to full-scale analysis. The analysis results were presented in the Draft EIS released in July 1994. The lead agencies also developed alternatives for the other proposed SOR actions, including a Columbia River Regional Forum for assisting in the detennination of future sass, Pacific Northwest Coordination Agreement alternatives for power coordination, and Canadian Entitlement Allocation Agreements alternatives. A series of nine public meetings was held in September and October 1994 to present the Draft EIS and appendices and solicit public input on the SOR. The lead agencies·received 282 fonnal written comments. Your comments have been used to revise and shape the alternatives presented in the Final EIS.
    [Show full text]
  • Washington's Channeled Scabland
    t\D l'llrl,. \·· ~. r~rn1 ,uR\fEY Ut,l\n . .. ,Y:ltate" tit1Washington ALBEIT D. ROSEWNI, Governor Department of Conservation EARL COE, Dlnctor DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By J HARLEN BRETZ 9TAT• PIUHTIHO PLANT ~ OLYMPIA, WASH., 1"511 State of Washington ALBERT D. ROSELLINI, Governor Department of Conservation EARL COE, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By .T HARLEN BRETZ l•or sate by Department or Conservation, Olympia, Washington. Price, 50 cents. FOREWORD Most travelers who have driven through eastern Washington have seen a geologic and scenic feature that is unique-nothing like it is to be found anywhere else in the world. This is the Channeled Scab­ land, a gigantic series of deeply cut channels in the erosion-resistant Columbia River basalt, the rock that covers most of the east-central and southeastern part of the state. Grand Coulee, with its spectac­ ular Dry Falls, is one of the most widely known features of this ex­ tensive set of dry channels. Many thousands of travelers must have wondered how this Chan­ neled Scabland came into being, and many geologists also have speculated as to its origin. Several geologists have published papers outlining their theories of the scabland's origin, but the geologist who has made the most thorough study of the problem and has ex­ amined the whole area and all the evidence having a bearing on the problem is Dr. J Harlen Bretz. Dr.
    [Show full text]
  • Silicon Valley Clean Energy V3
    SILICON VALLEY CLEAN ENERGY V3/ Courtenay C. Corrigan, Chair Silicon Valley Clean Energy Authority Town of Los Altos Hills Board of Directors Meeting Wednesday, March 14, 2018 Margaret Abe-Koga, Vice Chair 7:00 pm City of Mountain View Cupertino Community Hall Liz Gibbons 10350 Torre Avenue City of Campbell Cupertino, CA Rod Sinks AGENDA City of Cupertino Daniel Harney Call to Order City of Gilroy Roll Call Jeannie Bruins City of Los Altos Public Comment on Matters Not Listed on the Agenda Rob Rennie Town of Los Gatos The public may provide comments on any item not on the Agenda. Speakers are limited to 3 minutes each. Marsha Grilli City of Milpitas Consent Calendar (Action) Burton Craig 1a) Approve Minutes of the February 14, 2018, Board of Directors Meeting City of Monte Sereno 1b) Customer Program Advisory Group Report Steve Tate 1c) January 2018 Treasurer Report City of Morgan Hill 1d) Authorize CEO to Execute Agreement with Maher Accountancy for Dave Cortese Accounting Services County of Santa Clara 1e) Authorize CEO to Execute Amended Engagement Letter Clarifying Not- Howard Miller to-Exceed Amount per Fiscal Year, and a New Letter of Engagement For City of Saratoga Services Related to the 2017 Renewables RFO, with Troutman Sanders LLP Nancy Smith City of Sunnyvale 1f) Approve Amendment to FP1, Accounting Policy, to Remove Mention of Finance and Audit Committee and Replace with Audit Committee and Finance and Administration Committee 1g) Approve Amended SVCE Legislative Platform Regular Calendar svcleanenergy.org 2) Adopt Resolution to Approve SVCE Rate Schedules effective April 1, 333 W El Camino Real Suite 290 2018 (Action) Sunnyvale, CA 94087 3) 2018 SVCE Mid-Year Budget (Action) Page 1 of 2 Pursuant to the Americans with Disabilities Act, if you need special assistance in this meeting, please contact the Clerk for the Authority at (408) 721-5301 x1005.
    [Show full text]
  • Lesson 1 the Columbia River, a River of Power
    Lesson 1 The Columbia River, a River of Power Overview RIVER OF POWER BIG IDEA: The Columbia River System was initially changed and engineered for human benefit Disciplinary Core Ideas in the 20th Century, but now balance is being sought between human needs and restoration of habitat. Science 4-ESS3-1 – Obtain and combine Lesson 1 introduces students to the River of Power information to describe that energy curriculum unit and the main ideas that they will investigate and fuels are derived from natural resources and their uses affect the during the eleven lessons that make up the unit. This lesson environment. (Clarification Statement: focuses students on the topics of the Columbia River, dams, Examples of renewable energy and stakeholders. Through an initial brain storming session resources could include wind energy, students record and share their current understanding of the water behind dams, and sunlight; main ideas of the unit. This serves as a pre-unit assessment nonrenewable energy resources are fossil fuels and fissile materials. of their understanding and an opportunity to identify student Examples of environmental effects misconceptions. Students are also introduced to the main could include loss of habitat to dams, ideas of the unit by viewing the DVD selection Rivers to loss of habitat from surface mining, Power. Their understanding of the Columbia River and the and air pollution from burning of fossil fuels.) stakeholders who depend on the river is deepened through the initial reading selection in the student book Voyage to the Social Studies Pacific. Economics 2.4.1 Understands how geography, natural resources, Students set up their science notebook, which they will climate, and available labor use to record ideas and observations throughout the unit.
    [Show full text]
  • Dams and Hydroelectricity in the Columbia
    COLUMBIA RIVER BASIN: DAMS AND HYDROELECTRICITY The power of falling water can be converted to hydroelectricity A Powerful River Major mountain ranges and large volumes of river flows into the Pacific—make the Columbia precipitation are the foundation for the Columbia one of the most powerful rivers in North America. River Basin. The large volumes of annual runoff, The entire Columbia River on both sides of combined with changes in elevation—from the the border is one of the most hydroelectrically river’s headwaters at Canal Flats in BC’s Rocky developed river systems in the world, with more Mountain Trench, to Astoria, Oregon, where the than 470 dams on the main stem and tributaries. Two Countries: One River Changing Water Levels Most dams on the Columbia River system were built between Deciding how to release and store water in the Canadian the 1940s and 1980s. They are part of a coordinated water Columbia River system is a complex process. Decision-makers management system guided by the 1964 Columbia River Treaty must balance obligations under the CRT (flood control and (CRT) between Canada and the United States. The CRT: power generation) with regional and provincial concerns such as ecosystems, recreation and cultural values. 1. coordinates flood control 2. optimizes hydroelectricity generation on both sides of the STORING AND RELEASING WATER border. The ability to store water in reservoirs behind dams means water can be released when it’s needed for fisheries, flood control, hydroelectricity, irrigation, recreation and transportation. Managing the River Releasing water to meet these needs influences water levels throughout the year and explains why water levels The Columbia River system includes creeks, glaciers, lakes, change frequently.
    [Show full text]
  • Ice Age Floods National Geologic Trail Foundation Document, 2012
    Ice Age Floods National Geologic Trail Foundation Statement February 2014 Cover (left to right): Lake Pend Oreille, Farragut State Park, Idaho, NPS Photo Moses Coulee, Washington, NPS Photo Palouse Falls, Washington, NPS Photo Ice Age Floods National Geologic Trail Table of Contents Introduction.........................................................................................................................................2 Purpose of this Foundation Statement.................................................................................2 Development of this Foundation Statement........................................................................2 Elements of the Foundation Statement...............................................................................3 Trail Description.......................................................................................................................4 Map..........................................................................................................................................6 Trail Purpose.......................................................................................................................................8 Trail Signifcance................................................................................................................................10 Fundamental Resources and Values.................................................................................................12 Primary Interpretive Themes............................................................................................................22
    [Show full text]
  • The Holocene
    The Holocene http://hol.sagepub.com The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman The Holocene 2009; 19; 143 DOI: 10.1177/0959683608098958 The online version of this article can be found at: http://hol.sagepub.com/cgi/content/abstract/19/1/143 Published by: http://www.sagepublications.com Additional services and information for The Holocene can be found at: Email Alerts: http://hol.sagepub.com/cgi/alerts Subscriptions: http://hol.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.co.uk/journalsPermissions.nav Citations http://hol.sagepub.com/cgi/content/refs/19/1/143 Downloaded from http://hol.sagepub.com at University of Missouri-Columbia on January 13, 2009 The Holocene 19,1 (2009) pp. 143–150 The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman* (Department of Anthropology, 107 Swallow Hall, University of Missouri-Columbia, Columbia MO 65211, USA) Received 9 May 2008; revised manuscript accepted 30 June 2008 Abstract: Historical data are incomplete regarding the presence/absence and distribution of bighorn sheep (Ovis canadensis) in eastern Washington State. Palaeozoological (archaeological and palaeontological) data indicate bighorn were present in many areas there during most of the last 10 000 years. Bighorn occupied the xeric shrub-steppe habitats of the Channeled Scablands, likely because the Scablands provided the steep escape terrain bighorn prefer. The relative abundance of bighorn is greatest during climatically dry intervals and low during a moist period. Bighorn remains tend to increase in relative abundance over the last 6000 years.
    [Show full text]
  • Soil Crusts of Moses Coulee Area Washington
    Soil Crusts of Moses Coulee Area Washington Daphne Stone, Robert Smith and Amanda Hardman NW Lichenologists 2013-2014 Texosporium sancti-jacobi Introduction Biological soil crusts are a close association between soil particles and cyanobacteria, microfungi, algae, lichens and bryophytes (Belknap et al. 2001). They are known to be widespread across the arid lands of southern and western North America, where they reduce non-native plant invasion, aid in soil and water retention, reduce erosion and fix nitrogen, making this often growth-limiting nutrient available to the ecosystem (Belknap et al. 2001). On the other hand, soil crusts are just beginning to be explored in the Pacific Northwest. The earliest surveys were at Horse Heaven Hills in south-central Washington (Ponzetti et al. 2007). Now several areas in central Oregon, from the Columbia River basin in the north to the Lakeview BLM District in south central Oregon (Miller et al. 2011, Root and McCune 2012, Stone, unpublished Lakeview BLM reports 2013 and 2014 and Malheur N. F. 2014), have been surveyed. The central area of Washington, which includes many acres of steppe habitat in channeled scablands created by the Missoula Floods, has not previously been surveyed. Much of this land has been grazed, and some small areas remain undisturbed or have been closed to grazing recently. The purpose of this study was to survey intensively at sites with different levels of grazing activity, at different elevations, and in different habitats, in order to gain some understanding of what soil crust lichen and bryophyte species are present, the extent of the soil crusts, and the quality of different habitats.
    [Show full text]
  • Passage Route Survival and Behavior of Juvenile Salmon at Priest Rapids Dam, Columbia River, WA Kyle B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks at Central Washington University Central Washington University ScholarWorks@CWU Electronic Theses Student Scholarship and Creative Works Fall 2015 Passage Route Survival and Behavior of Juvenile Salmon at Priest Rapids Dam, Columbia River, WA Kyle B. Hatch Central Washington University, [email protected] Follow this and additional works at: http://digitalcommons.cwu.edu/etd Part of the Aquaculture and Fisheries Commons Recommended Citation Hatch, Kyle B., "Passage Route Survival and Behavior of Juvenile Salmon at Priest Rapids Dam, Columbia River, WA" (2015). Electronic Theses. Paper 271. This Thesis is brought to you for free and open access by the Student Scholarship and Creative Works at ScholarWorks@CWU. It has been accepted for inclusion in Electronic Theses by an authorized administrator of ScholarWorks@CWU. PASSAGE ROUTE SURVIVAL AND BEHAVIOR OF JUVENILE SALMON AT PRIEST RAPIDS DAM, COLUMBIA RIVER, WA A Thesis Presented to The Graduate Faculty Central Washington University In Partial Fulfillment of the Requirements for the Degree Master of Science Biology by Kyle Barrett Hatch November 2015 CENTRAL WASHINGTON UNIVERSITY Graduate Studies We hereby approve the thesis of Kyle Barrett Hatch Candidate for the degree of Master of Science APPROVED FOR THE GRADUATE FACULTY ______________ _________________________________________ Dr. Clay Arango, Committee Chair ______________ _________________________________________ Dr. Alison Scoville ______________ _________________________________________ Dr. Paul James ______________ _________________________________________ Dean of Graduate Studies ii ABSTRACT PASSAGE ROUTE SURVIVAL AND BEHAVIOR OF JUVENILE SALMON AT PRIEST RAPIDS DAM, COLUMBIA RIVER, WA by Kyle Barrett Hatch November 2015 Columbia River hydropower is an economic mainstay of the Pacific Northwest.
    [Show full text]
  • Foundation Document, Ice Age Floods National Geologic Trail, Montana
    Ice Age Floods National Geologic Trail DRAFT Foundation Statement September 2011 Cover (left to right): Lake Pend Oreille, Farragut State Park, Idaho, NPS Photo; Moses Coulee, Washington, NPS Photo; Palouse Falls, Washington, NPS Photo 2 Ice Age Floods National Geologic Trail Table of Contents Introduction.............................................................................................................................................................4 Trail Description....................................................................................................................................................6 Map..............................................................................................................................................................................8 Trail Purpose.........................................................................................................................................................10 Trail Significance.................................................................................................................................................12 Fundamental Resources and Values..............................................................................................................14 Primary Interpretive Themes..........................................................................................................................24 Special Mandates and Administrative Commitments............................................................................26
    [Show full text]