Minutes of the CHMP Meeting 14-17 September 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Duvelisib Eliminates CLL B Cells, Impairs CLL- Supporting Cells, and Overcomes Ibrutinib Resistance in Preclinical Models
Duvelisib Eliminates CLL B Cells, Impairs CLL- Supporting Cells, and Overcomes Ibrutinib Resistance in Preclinical Models Shih-Shih Chen ( [email protected] ) Karches Center for Oncology Research, the Feinstein Institutes for Medical Research Jacqueline Barrientos Karches Center for Oncology Research, the Feinstein Institutes for Medical Research Gerardo Ferrer Josep Carreras Leukaemia Research Institute (IJC) https://orcid.org/0000-0002-4084-6815 Priyadarshini Ravichandran Karches Center for Oncology Research, the Feinstein Institutes for Medical Research Michael Ibrahim Karches Center for Oncology Research, the Feinstein Institutes for Medical Research Yasmine Kieso Karches Center for Oncology Research, the Feinstein Institutes for Medical Research Jeff Kutok Innity Pharmaceuticals Marisa Peluso Innity Pharmaceuticals, Inc Sujata Sharma Innity Pharmaceuticals, Inc David Weaver Institute of Health Sciences, Anhui University Jonathan Pachter Verastem Inc. Kanti Rai The Karches Center for Oncology Research. The Feinstein Institutes for Medical Research. Nicholas Chiorazzi Karches Center for Oncology Research, the Feinstein Institutes for Medical Research Article Keywords: chronic lymphocytic leukemia, cancer therapy, Bruton’s Tyrosine Kinase (BTKi), phosphoinositide 3-kinase (PI3Ki) Page 1/23 Posted Date: July 21st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-701669/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/23 Abstract Inhibitors of Bruton’s Tyrosine Kinase (BTKi) and phosphoinositide 3-kinase (PI3Ki) have signicantly improved therapy of chronic lymphocytic leukemia (CLL). However, the emergence of resistance to BTKi has introduced an unmet therapeutic need. Here we demonstrate in vitro and in vivo the essential roles of PI3K-δ for CLL B-cell survival and migration and of PI3K-γ in T-cell migration and macrophage polarization; and more ecacious inhibition in CLL-cell burden by dual inhibition of PI3K-δ,γ. -
UAX #44: Unicode Character Database File:///D:/Uniweb-L2/Incoming/08249-Tr44-3D1.Html
UAX #44: Unicode Character Database file:///D:/Uniweb-L2/Incoming/08249-tr44-3d1.html Technical Reports L2/08-249 Working Draft for Proposed Update Unicode Standard Annex #44 UNICODE CHARACTER DATABASE Version Unicode 5.2 draft 1 Authors Mark Davis ([email protected]) and Ken Whistler ([email protected]) Date 2008-7-03 This Version http://www.unicode.org/reports/tr44/tr44-3.html Previous http://www.unicode.org/reports/tr44/tr44-2.html Version Latest Version http://www.unicode.org/reports/tr44/ Revision 3 Summary This annex consolidates information documenting the Unicode Character Database. Status This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in progress. A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is published online as a separate document. The Unicode Standard may require conformance to normative content in a Unicode Standard Annex, if so specified in the Conformance chapter of that version of the Unicode Standard. The version number of a UAX document corresponds to the version of the Unicode Standard of which it forms a part. Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this annex is found in Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.” For the latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. -
Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. -
Resistance to Immune Checkpoint Blockade in Uterine Leiomyosarcoma: What Can We Learn from Other Cancer Types?
cancers Review Resistance to Immune Checkpoint Blockade in Uterine Leiomyosarcoma: What Can We Learn from Other Cancer Types? Wout De Wispelaere 1 , Daniela Annibali 1,2 , Sandra Tuyaerts 1,3 , Diether Lambrechts 4,5 and Frédéric Amant 1,6,7,* 1 Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; [email protected] (W.D.W.); [email protected] (D.A.); [email protected] (S.T.) 2 Division of Oncogenomics, Antoni Van Leeuwenhoek—Netherlands Cancer Institute (AvL-NKI), 1066 CX Amsterdam, The Netherlands 3 Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium 4 Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven (University of Leuven), 3000 Leuven, Belgium; [email protected] 5 VIB Center for Cancer Biology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium 6 Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek—Netherlands Cancer Institute, University Medical Center (UMC), 1066 CX Amsterdam, The Netherlands 7 Department of Obstetrics and Gynecology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium * Correspondence: [email protected] Simple Summary: Immune checkpoint blockade (ICB) has emerged as a very promising therapeutic option for patients, demonstrating unprecedented, durable responses in several difficult-to-treat Citation: De Wispelaere, W.; cancers. Despite research indicating a strong potential for ICB in uterine leiomyosarcomas (uLMSs), a Annibali, D.; Tuyaerts, S.; Lambrechts, clinical trial assessing response to ICB monotherapy in uLMSs showed no clinical benefit. Resistance D.; Amant, F. Resistance to Immune to ICB has been studied extensively in a variety of tumor types, but the resistance mechanisms Checkpoint Blockade in Uterine explaining the lack of response to ICB in uLMSs remain largely unexplored. -
AHFS Pharmacologic-Therapeutic Classification System
AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective -
Duvelisib for Relapsed Chronic Lymphocytic Leukaemia – Second and Subsequent Line
Horizon Scanning Research April 2016 & Intelligence Centre Duvelisib for relapsed chronic lymphocytic leukaemia – second and subsequent line LAY SUMMARY Chronic lymphocytic leukaemia is a type of cancer which usually develops very slowly. In people with chronic lymphocytic leukaemia, the body makes too many white blood cells called lymphocytes. These This briefing is based on lymphocytes are abnormal and do not work properly so build up in the information lymph nodes (glands), spleen, bone marrow and blood. Many patients available at the time who have chronic lymphocytic leukaemia are diagnosed when having of research and a a routine blood test and if well, usually do not need to start treatment limited literature straight away. However, if the disease starts to cause symptoms, search. It is not treatment is then required. intended to be a definitive statement Duvelisib is a new type of drug for patients with chronic lymphocytic on the safety, leukaemia given as a tablet twice a day. Some studies have efficacy or suggested duvelisib may be helpful for people whose first treatment effectiveness of the has failed and whose disease has continued to spread. More studies health technology are now aiming to show how well it works and that it is safe to use. covered and should not be used for If duvelisib is licensed for use in the UK, it could be a new treatment commercial option for patients with chronic lymphocytic leukaemia that may reduce purposes or symptoms of the disease and increase survival. commissioning without additional information. NIHR HSRIC ID: 9609 This briefing presents independent research funded by the National Institute for Health Research (NIHR). -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Evkeeza™ (Evinacumab-Dgnb) NOTICE
DRUG POLICY Evkeeza™ (evinacumab-dgnb) NOTICE This policy contains information which is clinical in nature. The policy is not medical advice. The information in this policy is used by Wellmark to make determinations whether medical treatment is covered under the terms of a Wellmark member's health benefit plan. Physicians and other health care providers are responsible for medical advice and treatment. If you have specific health care needs, you should consult an appropriate health care professional. If you would like to request an accessible version of this document, please contact customer service at 800-524-9242. BENEFIT APPLICATION Benefit determinations are based on the applicable contract language in effect at the time the services were rendered. Exclusions, limitations or exceptions may apply. Benefits may vary based on contract, and individual member benefits must be verified. Wellmark determines medical necessity only if the benefit exists and no contract exclusions are applicable. This policy may not apply to FEP. Benefits are determined by the Federal Employee Program. DESCRIPTION The intent of the Evkeeza™ policy is to provide coverage consistent with product labeling, FDA guidance, standards of medical practice, evidence-based drug information, and/or published guidelines. The indications below including FDA-approved indications and compendial uses are considered covered benefits provided that all the approval criteria are met and the member has no exclusions to the prescribed therapy. FDA-Approved Indications Evkeeza (evinacumab-dgnb) is an ANGPTL3 (angiopoietin-like 3) inhibitor indicated as an adjunct to other low-density lipoprotein-cholesterol (LDL-C) lowering therapies for the treatment of adult and pediatric patients, aged 12 years and older, with homozygous familial hypercholesterolemia (HoFH). -
Phase I/II Clinical Trial of Temsirolimus and Lenalidomide in Patients with Relapsed and Refractory Lymphomas by Ajay Major, Justin Kline, Theodore G
Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas by Ajay Major, Justin Kline, Theodore G. Karrison, Paul A.S. Fishkin, Amy S. Kimball, Adam M. Petrich, Sreenivasa Nattam, Krishna Rao, Bethany G. Sleckman, Kenneth Cohen, Koen van Besien, Aaron P. Rapoport, and Sonali M. Smith Received: April 18, 2021. Accepted: July 22, 2021. Citation: Ajay Major, Justin Kline, Theodore G. Karrison, Paul A.S. Fishkin, Amy S. Kimball, Adam M. Petrich, Sreenivasa Nattam, Krishna Rao, Bethany G. Sleckman, Kenneth Cohen, Koen van Besien, Aaron P. Rapoport and Sonali M. Smith. Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas. Haematologica. 2021 Jul 29. doi: 10.3324/haematol.2021.278853. [Epub ahead of print] Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process. Phase I/II TEM/LEN clinical trial Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas Ajay Major1; Justin Kline1; Theodore G. -
Following Sub-Sections: 1) Languageintroduction, Grade 6
DOCUMENT RESUME ED 051 153 SP 007 203 TITLE Curriculum Guide, English for Grades VI-IX. INST:aUTIO/ Boston Public Schools, Mass. PUB DATE 70 NOTE 307p.; School Document No 2-1970 AVAILABLE FROM Boston School Committee, 15 Beacon Street, Boston, Mass. 02108 ($3.75, check payable to The City of Boston) EtRS PRICE EDRS Price MF-$0.65 HC-$13.16 DESCRIPTORS Composition (Literary), *Curriculum Guides, *English Curriculum, English Literature, Grade 6, Grade 7, Grade 8, Grade 9, *Intermediate Grades, *Junior High Schools, Language Instruction, *Middle Schools ABSTRACT GRADES OR AGES: Grades 6-9. SUBJECT MATTER: English. ORGANIZATION AND PHYSICAL APPEARANCE: The guide has three main sections dealing with language, literature, and composition with the following sub-sections: 1) languageintroduction, grade 6, grade 7, grade 8, grade 9, chronology, bibliography, spelling, listening skills; 2) literature -- overview and teaching techuiguez, grade 6, grade 7, grade 8, grade 9, choral speaking; and 3) composition. The guide is mimeographed and spiral-bound with a soft cover. OBJECTIVES AND ACTIVITIES: Objectives are listed for the various topics. Suggested classroom activities andtudent enrichment activities are included in the text. INSTRUCTIONAL MATERIALS: References to texts and materials are given at the end of sone sub-sections. There is also a bibliography, and a list of suggested texts for composition. STUDENT ASSESSMENT: The section on composition includes a oriel description of evaluation techniques for the teacher. (MBM) .=r II PERSYSSieN TO PCPROOVCE THIS IVINP 1111111111 MATERIAL HAS BEEN GRAMM BY kg-21c.y 4-097:. elyzAre__,__ TO ERIC AND ORGANIZATIONS OPYRATING UNDER AGREEMENTS Was THE ,u$ OffiCE OF EDUCATIONFOP r'R REPFOPUCTION OUTSIDE THE ERIC ,a.'ENI REQUIRES PER MISSION CIF THE COPYRIGHT OWNER School Document No. -
The Two Tontti Tudiul Lui Hi Ha Unit
THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int . -
Antibodies to Watch in 2021 Hélène Kaplona and Janice M
MABS 2021, VOL. 13, NO. 1, e1860476 (34 pages) https://doi.org/10.1080/19420862.2020.1860476 PERSPECTIVE Antibodies to watch in 2021 Hélène Kaplona and Janice M. Reichert b aInstitut De Recherches Internationales Servier, Translational Medicine Department, Suresnes, France; bThe Antibody Society, Inc., Framingham, MA, USA ABSTRACT ARTICLE HISTORY In this 12th annual installment of the Antibodies to Watch article series, we discuss key events in antibody Received 1 December 2020 therapeutics development that occurred in 2020 and forecast events that might occur in 2021. The Accepted 1 December 2020 coronavirus disease 2019 (COVID-19) pandemic posed an array of challenges and opportunities to the KEYWORDS healthcare system in 2020, and it will continue to do so in 2021. Remarkably, by late November 2020, two Antibody therapeutics; anti-SARS-CoV antibody products, bamlanivimab and the casirivimab and imdevimab cocktail, were cancer; COVID-19; Food and authorized for emergency use by the US Food and Drug Administration (FDA) and the repurposed Drug Administration; antibodies levilimab and itolizumab had been registered for emergency use as treatments for COVID-19 European Medicines Agency; in Russia and India, respectively. Despite the pandemic, 10 antibody therapeutics had been granted the immune-mediated disorders; first approval in the US or EU in 2020, as of November, and 2 more (tanezumab and margetuximab) may Sars-CoV-2 be granted approvals in December 2020.* In addition, prolgolimab and olokizumab had been granted first approvals in Russia and cetuximab saratolacan sodium was first approved in Japan. The number of approvals in 2021 may set a record, as marketing applications for 16 investigational antibody therapeutics are already undergoing regulatory review by either the FDA or the European Medicines Agency.