International Journal of Molecular Sciences Review Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm Quang-Minh Nguyen 1,† , Arya Bagus Boedi Iswanto 1,† , Geon Hui Son 1 and Sang Hee Kim 1,2,* 1 Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea;
[email protected] (Q.-M.N.);
[email protected] (A.B.B.I.);
[email protected] (G.H.S.) 2 Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea * Correspondence:
[email protected] † These authors contributed equally to this work. Abstract: Plants rely on multiple immune systems to protect themselves from pathogens. When pattern-triggered immunity (PTI)—the first layer of the immune response—is no longer effective as a result of pathogenic effectors, effector-triggered immunity (ETI) often provides resistance. In ETI, host plants directly or indirectly perceive pathogen effectors via resistance proteins and launch a more robust and rapid defense response. Resistance proteins are typically found in the form of nucleotide- binding and leucine-rich-repeat-containing receptors (NLRs). Upon effector recognition, an NLR undergoes structural change and associates with other NLRs. The dimerization or oligomerization of NLRs signals to downstream components, activates “helper” NLRs, and culminates in the ETI response. Originally, PTI was thought to contribute little to ETI. However, most recent studies revealed crosstalk and cooperation between ETI and PTI. Here, we summarize recent advancements Citation: Nguyen, Q.-M.; Iswanto, in our understanding of the ETI response and its components, as well as how these components A.B.B.; Son, G.H.; Kim, S.H.