molecules Review Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR) Nichole E. M. Kaufman 1, Simran Dhingra 1 , Seetharama D. Jois 2,* and Maria da Graça H. Vicente 1,* 1 Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA;
[email protected] (N.E.M.K.);
[email protected] (S.D.) 2 School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA * Correspondence:
[email protected] (S.D.J.);
[email protected] (M.d.G.H.V.); Tel.: +1-225-578-7405 (M.d.G.H.V.); Fax: +1-225-578-3458 (M.d.G.H.V.) Abstract: Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances Citation: Kaufman, N.E.M.; Dhingra, in molecular imaging techniques, including positron emission tomography (PET), single-photon S.; Jois, S.D.; Vicente, M.d.G.H. emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance Molecular Targeting of Epidermal imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using Growth Factor Receptor (EGFR) and tetrapyrrolic-based fluorophores, concludes this review.