The Small Molecule Specific Ephb4 Kinase Inhibitor NVP-BHG712

Total Page:16

File Type:pdf, Size:1020Kb

The Small Molecule Specific Ephb4 Kinase Inhibitor NVP-BHG712 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Angiogenesis (2010) 13:259–267 DOI 10.1007/s10456-010-9183-z ORIGINAL PAPER The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis Georg Martiny-Baron • Philipp Holzer • Eric Billy • Christian Schnell • Joseph Brueggen • Mireille Ferretti • Niko Schmiedeberg • Jeanette M. Wood • Pascal Furet • Patricia Imbach Received: 13 July 2010 / Accepted: 5 August 2010 / Published online: 29 August 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract EphB4 and its cognitive ligand ephrinB2 play kinases in biochemical as well as in cell based assays. an important role in embryonic vessel development and Furthermore, NVP-BHG712 shows excellent pharmacoki- vascular remodeling. In addition, several reports suggest netic properties and potently inhibits EphB4 autophos- that this receptor ligand pair is also involved in pathologic phorylation in tissues after oral administration. In vivo, vessel formation in adults including tumor angiogenesis. NVP-BHG712 inhibits VEGF driven vessel formation, Eph/ephrin signaling is a complex phenomena character- while it has only little effects on VEGF receptor (VEGFR) ized by receptor forward signaling through the tyrosine activity in vitro or in cellular assays. The data shown here kinase of the receptor and ephrin reverse signaling through suggest a close cross talk between the VEGFR and EphR various protein–protein interaction domains and phos- signaling during vessel formation. In addition to its phorylation motifs of the ephrin ligands. Therefore, inter- established function in vascular remodeling and endothelial fering with EphR/ephrin signaling by the means of targeted arterio-venous differentiation, EphB4 forward signaling gene ablation, soluble receptors, dominant negative appears to be an important mediator of VEGF induced mutants or antisense molecules often does not allow to angiogenesis since inhibition of EphB4 forward signaling discriminate between inhibition of Eph/ephrin forward and is sufficient to inhibit VEGF induced angiogenesis. reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP- Keywords Angiogenesis Á EphB4 Á EphrinB2 Á VEGF Á BHG712, which inhibits EphB4 kinase activity in the low Protein kinase inhibitor nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other Introduction G. Martiny-Baron (&) Formation of the vascular network is tightly controlled by a Novartis Institutes for Biomedical Research, Expertise Platform variety of growth factors and their appropriate receptors. Kinases, Novartis Campus, Fabrikstrasse 16, WJS152.1.72.2, Thus, receptor tyrosine kinases which are expressed on 4056 Basel, Switzerland endothelial cells (ECs) have been shown to be crucial for e-mail: [email protected] embryonic vasculogenesis and angiogenesis (for review see P. Holzer Á N. Schmiedeberg Á P. Furet Á P. Imbach [1]). While VEGF (vascular endothelial growth factor) Novartis Institutes for Biomedical Research, Global Discovery receptors activated by VEGF mainly contribute to very Chemistry, Basel, Switzerland early steps of vasculogenesis and angiogenesis including E. Billy Á C. Schnell Á J. Brueggen Á M. Ferretti differentiation of EC precursors and formation of a prim- Novartis Institutes for Biomedical Research, Oncology, Basel, itive vascular network, two other receptor tyrosine kinases Switzerland and their ligands, namely the angiopoietin/TIE-2 (tyrosine kinase with Ig like loops and EGF like repeats 2) and Present Address: J. M. Wood ephrinB2/EphB4 respectively, contribute to later steps of S*BIO Pte Ltd, Singapore, Singapore vascular development like vessel branching and vessel 123 260 Angiogenesis (2010) 13:259–267 maturation and the recruitment of EC associated pericytes/ receptor inhibits angiogenesis in a VEGF driven in vivo smooth muscle cells. model, which has been used to characterize small molecule The Eph receptors (receptor cloned from erythropoietin- inhibitors of the VEGFR2 kinase [29]. Therefore, we tested producing hepatocellular carcinoma) are the largest sub- whether the selective inhibitor of the EphB4 kinase NVP- family of receptor tyrosine kinases and are activated by BHG712 would mimic the effect of soluble EphB4 in this their cell surface bound ligands of the equally large ephrin VEGF driven angiogenesis model. To our knowledge, this family (Eph receptor interacting protein). Both, receptors is the first report demonstrating that a selective small and ligands are divided into an A- and B-class; nine EphA molecule kinase inhibitor of the EphB4 kinase is sufficient receptors bind to five A-ligands and five EphB receptors to inhibit VEGF driven angiogenesis in vivo. bind to three ephrinB ligands. Like for other receptor tyrosine kinases (RTKs), receptor signaling is initiated by oligomerization and tyrosine-phosphorylation of the Methods receptor. Unlike other ligand/RTK pairs, also ephrin ligands can transmit signals upon receptor engagement, a Synthesis of NVP-BHG712 phenomenon which is called bi-directional signaling. EphrinB-ligands, which possess a transmembrane and Synthesis of NVP-BHG712 was performed in the labora- cytoplasmatic domain, get tyrosine-phosphorylated upon tories of Novartis Institutes for Biomedical Research and receptor binding which induces ephrin reverse signaling in has been described in the patent application WO2007/ addition to the receptor forward signaling (for review see 062805 [30]. [2]). Although quite promiscuous interactions between EphRs and their ligands the ephrins have been observed, In vitro kinase assays ephrinB2 is the only known ligand for EphB4. EphB4 and ephrinB2 were the first genes discovered to be differen- All in vitro kinase assays were performed with recombi- tially expressed in arterial and venous endothelium and nant purified kinases either purchased from external ven- genetic ablation of either EphB4 or ephrinB2 are embry- dors or produced in house. To estimate kinase activity both, TM onic lethal due to impaired vascular remodeling and arrest TR-FRET-based LanthaScreen and Caliper mobility shift of endothelial differentiation [3, 4]. were used. The assays have been described previously Over-expression of EphB4 has been reported for several [31, 32]. TM tumor types including breast, colon, bladder, endometrium In brief, the LanthaScreen assay technology is based on and ovary [5–10]. The role of EphB4 in cancer is not fully the discrimination between the unphosphorylated substrate elucidated. On the one side, EphB4 expressed on tumor and the phosphorylated product by a phospho-specific cells can interact with ephrinB2 of the endothelium and antibody, binding only to the phosphorylated version of the thereby promotes tumor angiogenesis and growth [11], on substrate. Both, antibody and substrate, carry fluorescent the other hand EphB4 has been described to either promote labels and the close proximity of the labels in the formed or suppress tumor growth, depending on the tumor type and complex allows the measurement of a fluorescence reso- tumor model which has been looked at [5, 12–15]. The nance energy transfer (FRET) signal. Reading of the FRET paradoxes of EphB4 signaling in cancer has been recently signal in a time-dependent/time-gated manner further discussed [16]. improves the assay performance by reducing background Despite this, EphB4 and ephrinB2 signaling has been fluorescence [33]. For dose–response measurements NVP- proven to be involved in sites of adult angiogenesis by the BHG712 was pre-diluted in 90% DMSO and 50 nL of use of soluble EphB4 [17, 18]. In addition, monoclonal compound solutions were dispensed directly into the empty inhibitory antibodies and peptides, blocking EphB4-eph- assay plate using a HummingBird nanodispenser (Zinsser rinB2 interaction have been developed to study the role of Analytic). The kinase reactions were started by addition of EphB4/ephbrinB2 signaling [19–21]. Further tools which 4.5 lL ATP solution (4 lM ATP, 20 mM Tris/HCL, 1 mM have been developed in the context of EphB4/ephrinB2 DTT, 0.03% Tween20, 0.01 mM Na3VO4) and 4.5 lL signaling include engineered mouse models [3, 4, 22, 23], enzyme/substrate mix (100 nM fluorescein poly-GAT; soluble receptors [5, 17, 24] and peptides blocking ligand Invitrogen), 0.5% bovine serum albumin, 20 mM Tris/ receptor interaction [19, 20]. HCL, 1 mM DTT, 0.03% Tween20, 0.01 mM Na3VO4). Small molecule inhibitors of the EphB4 kinase have Further components of the enzyme/substrate mix were the been described recently by others with different degree of enzymes as well as MgCl2/MnCl2 which were adjusted specificity against other kinases [25–28]. So far, no efficacy specifically to the requirements of the individual enzyme. data from in vivo studies for these compounds have been After incubation for 60 min at r.t. the kinase reactions were reported. In our studies we noticed, that soluble EphB4 stopped by addition of 4.5 lL stop solution (50 mM EDTA 123 Angiogenesis (2010) 13:259–267 261 pH 8.0, 0.04% NP-40, 20 mM Tris/HCl pH 7.4) followed proteins were immunoprecipated using either anti-V5-epi- by 4.5 lL of detection mix (1.72 lg/mL Tb-PY20 anti- tope or anti-myc-epitope antibodies and analyzed by wes- body; Invitrogen), 1% bovine serum albumin, 20 mM Tris/ tern using the mab 4G10 anti-phospho-tyrosine antibody. HCl, 1 mM DTT, 0.03% Tween20,
Recommended publications
  • Targeting FGFR/PDGFR/VEGFR Impairs Tumor Growth, Angiogenesis, and Metastasis by Effects on Tumor Cells, Endothelial Cells, and Pericytes in Pancreatic Cancer
    Published OnlineFirst September 1, 2011; DOI: 10.1158/1535-7163.MCT-11-0312 Molecular Cancer Preclinical Development Therapeutics Targeting FGFR/PDGFR/VEGFR Impairs Tumor Growth, Angiogenesis, and Metastasis by Effects on Tumor Cells, Endothelial Cells, and Pericytes in Pancreatic Cancer Johannes Taeger1, Christian Moser1, Claus Hellerbrand2, Maria E. Mycielska1, Gabriel Glockzin1, Hans J. Schlitt1, Edward K. Geissler1, Oliver Stoeltzing3, and Sven A. Lang1 Abstract Activation of receptor tyrosine kinases, such as fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), and VEGF receptor (VEGFR), has been implicated in tumor progression and metastasis in human pancreatic cancer. In this study, we investigated the effects of TKI258, a tyrosine kinase inhibitor to FGFR, PDGFR, and VEGFR on pancreatic cancer cell lines (HPAF-II, BxPC-3, MiaPaCa2, and L3.6pl), endothelial cells, and vascular smooth muscle cells (VSMC). Results showed that treatment with TKI258 impaired activation of signaling intermediates in pancreatic cancer cells, endothelial cells, and VSMCs, even upon stimulation with FGF-1, FGF-2, VEGF-A, and PDGF-B. Furthermore, blockade of FGFR/PDGFR/VEGFR reduced survivin expression and improved activity of gemcitabine in MiaPaCa2 pancreatic cancer cells. In addition, motility of cancer cells, endothelial cells, and VSMCs was reduced upon treatment with TKI258. In vivo, therapy with TKI258 led to dose-dependent inhibition of subcutaneous (HPAF-II) and orthotopic (L3.6pl) tumor growth. Immunohistochemical analysis revealed effects on tumor cell proliferation [bromodeoxyuridine (BrdUrd)] and tumor vascularization (CD31). Moreover, lymph node metastases were significantly reduced in the orthotopic tumor model when treatment was initiated early with TKI258 (30 mg/kg/d).
    [Show full text]
  • The Role of Signaling Pathways in the Development and Treatment of Hepatocellular Carcinoma
    Oncogene (2010) 29, 4989–5005 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW The role of signaling pathways in the development and treatment of hepatocellular carcinoma S Whittaker1,2, R Marais3 and AX Zhu4 1Dana-Farber Cancer Institute, Boston, MA, USA; 2The Broad Institute, Cambridge, MA, USA; 3Institute of Cancer Research, London, UK and 4Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA Hepatocellular carcinoma (HCC) is a highly prevalent, malignancy in adults (Pons-Renedo and Llovet, 2003). treatment-resistant malignancy with a multifaceted mole- For the vast majority of patients, HCC is a late cular pathogenesis. Current evidence indicates that during complication of chronic liver disease, and as such, is hepatocarcinogenesis, two main pathogenic mechanisms often associated with cirrhosis. The main risk factors for prevail: (1) cirrhosis associated with hepatic regeneration the development of HCC include infection with hepatitis after tissue damage caused by hepatitis infection, toxins B virus (HBV) or hepatitis C virus (HCV). Hepatitis (for example, alcohol or aflatoxin) or metabolic influ- infection is believed to be the main etiologic factor in ences, and (2) mutations occurring in single or multiple 480% of cases (Anzola, 2004). Other risk factors oncogenes or tumor suppressor genes. Both mechanisms include excessive alcohol consumption, nonalcoholic have been linked with alterations in several important steatohepatitis, autoimmune hepatitis, primary biliary cellular signaling pathways. These pathways are of cirrhosis, exposure to environmental carcinogens (parti- interest from a therapeutic perspective, because targeting cularly aflatoxin B) and the presence of various genetic them may help to reverse, delay or prevent tumorigenesis.
    [Show full text]
  • Structural and Mechanistic Insights Into VEGF Receptor 3 Ligand Binding and Activation
    Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation Veli-Matti Leppänena,1, Denis Tvorogova,1, Kaisa Kiskob, Andrea E. Protab, Michael Jeltscha, Andrey Anisimova, Sandra Markovic-Muellerb, Edward Stuttfeldb,c, Kenneth N. Goldied, Kurt Ballmer-Hoferb, and Kari Alitaloa,2 aWihuri Research Institute and Translational Cancer Biology Program, Institute for Molecular Medicine Finland and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland; bLaboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland; cStructural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and dCenter for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland Edited by Napoleone Ferrara, University of California at San Diego, La Jolla, CA, and approved June 26, 2013 (received for review January 23, 2013) Vascular endothelial growth factors (VEGFs) and their receptors binding, VEGFRs use predominantly D2, with D3 providing ad- (VEGFRs) are key drivers of blood and lymph vessel formation in ditional binding affinity (16–18). In addition, D1 is required for development, but also in several pathological processes. VEGF-C VEGFR-3 ligand binding, but the exact role of this domain re- signaling through VEGFR-3 promotes lymphangiogenesis, which is mains elusive (19, 20). VEGFRs and the closely related type III a clinically relevant target for treating lymphatic insufficiency and RTKs are activated by ligand-induced dimerization of the extra- for blocking tumor angiogenesis and metastasis. The extracellular cellular domain, followed by tyrosine autophosphorylation of the domain of VEGFRs consists of seven Ig homology domains; intracellular kinase domain to generate downstream signaling domains 1–3 (D1-3) are responsible for ligand binding, and the (21).
    [Show full text]
  • (VEGF) Receptor Gene, KDR, in Hematopoietic Cells and Inhibitory Effect of VEGF on Apoptotic Cell Death Caused by Ionizing Radiation
    ICANCERRESEARCH55. 5687-5692. December I, 9951 Expression of the Vascular Endothelial Growth Factor (VEGF) Receptor Gene, KDR, in Hematopoietic Cells and Inhibitory Effect of VEGF on Apoptotic Cell Death Caused by Ionizing Radiation Osamu Katoh,' Hiroshi Tauchi, Kuniko Kawaishi, Akiro Kimura, and Yukio Satow Departments of Environment and Mutation 10. K., K. K., A. K., I'. S.J and Radiation Biology (H. TI, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima-shi 734, Japan ABSTRACT growth factors regulating hematopoiesis, including megakaryocyto poiesis. Several tyrosine kinase genes including KDR, FMS, KIT, and Vascular endothelial growth factor (VEGF) has been identified as a TIE were detected by RT-PCR using degenerated primers correspond peptide growth factor specific for vascular endothelial cells. In this study, ing to the catalytic domains of the tyrosine kinase family (2, 3, 9, 10). we demonstrated the expression of the KDR gene transcript, which en We also report here mRNA expression of the FLT-1 and VEGF genes codes a cell surface receptor for VEGF, in normal human hematopoietic stem cells, megakaryocytes, and platelets as well as in human leukemia cell (1 1, 12) in human leukemia cell lines, hematopoietic stem cells, and lines, HEL and CMKS6. Moreover, we showed the expression of VEGF megakaryocytes. The KDR gene product and the FLT-1 gene product gene transcript in these normal fresh cells and cell lines To elucidate belong to the VEGF receptor family (9, 13, 14). biological functions of VEGF on hematopoiesis, we determined whether VEGF has been identified as a peptide growth factor specific for this growth factor has mitogenic activity to hematopoietic cells or the vascular endothelial cells ( 11).
    [Show full text]
  • A Selective Inhibitor of Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase That Suppresses Tumor Angiogenesis and Growth
    Molecular Cancer Therapeutics 1639 KRN633: A selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase that suppresses tumor angiogenesis and growth Kazuhide Nakamura,1 Atsushi Yamamoto,1 permeability. These data suggest that KRN633 might be Masaru Kamishohara,1 Kazumi Takahashi,1 useful in the treatment of solid tumors and other diseases Eri Taguchi,1 Toru Miura,1 Kazuo Kubo,1 that depend on pathologic angiogenesis. [Mol Cancer Ther Masabumi Shibuya,2 and Toshiyuki Isoe1 2004;3(12):1639–49] 1Pharmaceutical Development Laboratories, Kirin Brewery Co. Ltd., Takasaki, Gunma and 2Division of Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan Introduction The formation of new blood vessels (angiogenesis) is es- sential for tumor progression and metastasis (1). This Abstract process is strictly controlled by positive angiogenic factors Vascular endothelial growth factor (VEGF) and its receptor and negative regulators; therefore, tumors without an VEGFR-2 play a central role in angiogenesis, which is angiogenic phenotype cannot grow beyond a certain size necessary for solid tumors to expand and metastasize. and remain in a state of dormancy. However, once tumors Specific inhibitors of VEGFR-2 tyrosine kinase are therefore become capable of angiogenesis due to somatic mutations thought to be useful for treating cancer. We showed that that alter the balance between angiogenic factors and neg- the quinazoline urea derivative KRN633 inhibited tyrosine ative regulators, they can grow rapidly and metastasize (2). Vascular endothelial growth factor (VEGF) is the an- phosphorylation of VEGFR-2 (IC50 = 1.16 nmol/L) in human umbilical vein endothelial cells. Selectivity profiling giogenic factor that is most closely associated with ag- with recombinant tyrosine kinases showed that KRN633 gressive disease in numerous solid tumors.
    [Show full text]
  • And Vascular Endothelial Growth Factor Receptor (VEGFR)
    molecules Review Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR) Nichole E. M. Kaufman 1, Simran Dhingra 1 , Seetharama D. Jois 2,* and Maria da Graça H. Vicente 1,* 1 Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; [email protected] (N.E.M.K.); [email protected] (S.D.) 2 School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA * Correspondence: [email protected] (S.D.J.); [email protected] (M.d.G.H.V.); Tel.: +1-225-578-7405 (M.d.G.H.V.); Fax: +1-225-578-3458 (M.d.G.H.V.) Abstract: Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances Citation: Kaufman, N.E.M.; Dhingra, in molecular imaging techniques, including positron emission tomography (PET), single-photon S.; Jois, S.D.; Vicente, M.d.G.H. emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance Molecular Targeting of Epidermal imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using Growth Factor Receptor (EGFR) and tetrapyrrolic-based fluorophores, concludes this review.
    [Show full text]
  • Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma
    cancers Article Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma Catarina Nascimento 1 , Andreia Gameiro 1, João Ferreira 2, Jorge Correia 1 and Fernando Ferreira 1,* 1 CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; [email protected] (C.N.); [email protected] (A.G.); [email protected] (J.C.) 2 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-21-365-2800 (ext. 431234) Simple Summary: Feline mammary carcinoma (FMC) is the third most common neoplasia in the cat, showing a highly malignant behavior, with both HER2-positive and triple negative (TN) subtypes presenting worse prognosis than luminal A and B subtypes. Furthermore, FMC has become a reliable cancer model for the study of human breast cancer, due to the similarities of clinicopathological, histopathological, and epidemiological features among the two species. Therefore, the identification of novel diagnostic biomarkers and therapeutic targets is needed to improve the clinical outcome of these patients. The aim of this study was to assess the potential of the VEGF-A/VEGFRs pathway, in order to validate future diagnostic and checkpoint-blocking therapies. Results showed that serum VEGF-A, VEGFR-1, and VEGFR-2 levels were significantly higher in cats with HER2-positive and TN normal-like tumors, presenting a positive association with its tumor-infiltrating lymphocytes expres- sion, suggesting that these molecules may serve as promising non-invasive diagnostic biomarkers for these subtypes.
    [Show full text]
  • Implications for Combining Anti–VEGF and Anti–EGFR Agents
    Subject Review The Role of VEGF and EGFR Inhibition: Implications for Combining Anti–VEGF and Anti–EGFR Agents Josep Tabernero Medical Oncology Service, Vall d’Hebron University Hospital, Barcelona, Spain Abstract faceted approach involving targeted inhibition of multiple Multiple cellular pathways influence the growth and signaling pathways may be more effective than inhibition of metastatic potential of tumors. This creates a single target and may help overcome tumor resistance by heterogeneity, redundancy, and the potential for tumors blocking potential ‘‘escape routes.’’ to bypass signaling pathway blockade, resulting in Two key elements in the growth and dissemination of tumors primary or acquired resistance. Combining therapies that are the vascular endothelial growth factor (VEGF) and the inhibit different signaling pathways has the potential to epidermal growth factor (EGF) receptor (EGFR). The VEGF be more effective than inhibition of a single pathway and and EGFR pathways are closely related, sharing common down- to overcome tumor resistance. Vascular endothelial stream signaling pathways (1). Furthermore, EGF, a key EGFR growth factor (VEGF) and epidermal growth factor ligand, is one of the many growth factors that drive VEGF receptor (EGFR) inhibitors have become key therapies in expression (2). VEGF and EGFR play important roles in tumor several tumor types. Close relationships between these growth and progression through the exertion of both indirect and factors exist: VEGF signaling is up-regulated by EGFR direct effects on tumor cells (1). Biological agents targeting the expression and, conversely, VEGF up-regulation VEGF and EGFR pathways have shown clinical benefit in independent of EGFR signaling seems to contribute to several human cancers, either alone or in combination with resistance to EGFR inhibition.
    [Show full text]
  • Blockade of Epha Receptor Tyrosine Kinase Activation Inhibits Vascular Endothelial Cell Growth Factor-Induced Angiogenesis
    2 Vol. 1, 2–11, November 2002 Molecular Cancer Research Blockade of EphA Receptor Tyrosine Kinase Activation Inhibits Vascular Endothelial Cell Growth Factor-Induced Angiogenesis Nikki Cheng,1 Dana M. Brantley,2 Hua Liu,3,4 Qin Lin,2 Miriam Enriquez,4 Nick Gale,5 George Yancopoulos,5 Douglas Pat Cerretti,3 Thomas O. Daniel,3,4 and Jin Chen1,2,6 Departments of 1Cancer Biology, 2Medicine, Division of Rheumatology, 4Division of Nephrology, and 6Cell Biology, Vanderbilt University School of Medicine, Nashville, TN; 3Immunex Corporation, Seattle, WA; and 5Regeneron Inc., Tarrytown, NY Abstract endothelial cell proliferation, migration, and assembly, as well Angiogenesis is a multistep process involving a diverse as recruitment of perivascular cells and extracellular matrix array of molecular signals. Ligands for receptor tyrosine remodeling. Three families of receptor tyrosine kinases (RTKs) kinases (RTKs) have emerged as critical mediators of have emerged as critical mediators of angiogenesis; these are the angiogenesis. Three families of ligands, vascular endo- vascular endothelial growth factor (VEGF), Tie, and Eph RTK thelial cell growth factors (VEGFs), angiopoietins, and families (1, 2). VEGF (VEGF-A/VEGF165) is a potent angio- ephrins, act via RTKs expressed in endothelial cells. genic factor in both embryonic development and in adult disease Recent evidence indicates that VEGF cooperates with states, such as cancer. VEGF and its RTKs, Flt-1/VEGFR1 and angiopoietins to regulate vascular remodeling and Flk-1/KDR/VEGFR2, are required for the development and angiogenesis in both embryogenesis and tumor remodeling of blood vessels during embryogenesis (3–8). neovascularization. However, the relationship between Moreover, VEGF signaling plays a crucial role in pathogenic VEGF and ephrins remains unclear.
    [Show full text]
  • VEGF Receptor Protein–Tyrosine Kinases: Structure and Regulation
    Biochemical and Biophysical Research Communications 375 (2008) 287–291 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Mini Review VEGF receptor protein–tyrosine kinases: Structure and regulation Robert Roskoski Jr. * Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116A, Box 19, Horse Shoe, NC 28742, USA article info abstract Article history: The human VEGF family consists of VEGF (VEGF-A), VEGF-B, VEGF-C, VEGF-D, and placental growth factor Received 6 July 2008 (PlGF). The VEGF family of receptors consists of three protein–tyrosine kinases (VEGFR1, VEGFR2, and Available online 3 August 2008 VEGFR3) and two non-protein kinase co-receptors (neuropilin-1 and neuropilin-2). These components participate in new blood vessel formation from angioblasts (vasculogenesis) and new blood vessel forma- tion from pre-existing vasculature (angiogenesis). Interaction between VEGFR1 and VEGFR2 or VEGFR2 Keywords: and VEGFR3 alters receptor tyrosine phosphorylation. Angiogenesis Ó 2008 Elsevier Inc. All rights reserved. Flt-1 Flk-1/KDR Lymphangiogenesis Protein–tyrosine kinase Vasculogenesis . VEGF is one of the key regulators of angiogenesis, vasculogene- minal tail (Fig. 1 and Table 1). These enzymes catalyze the sis, and developmental hematopoiesis [1]. VEGF is a mitogen and following reaction: survival factor for vascular endothelial cells while also promoting MgATP1À protein-OH Protein-OPO2À MgADP Hþ vascular endothelial cell and monocyte motility. VEGF-B also pro- þ ! 3 þ þ motes angiogenesis in an ill-defined manner. VEGF-C participates where -OH is a tyrosyl hydroxyl group. Moreover, there are two in lymphangiogenesis during embryogenesis and in the mainte- non-enzymatic VEGF family co-receptors (neuropilin-1 and neuro- nance of differentiated lymphatic endothelium in adults.
    [Show full text]
  • HER2/Neu: an Increasingly Important Therapeutic Target
    Clinical Trial Outcomes NELSON HER2/neu: an increasingly important therapeutic target. Part 1 4 Clinical Trial Outcomes HER2/neu: an increasingly important therapeutic target. Part 1: basic biology & therapeutic armamentarium Clin. Invest. This is the first of a comprehensive three-part review of the foundation for and Edward L Nelson therapeutic targeting of HER2/neu. No biological molecule in oncology has been more University of California, Irvine, extensively or more successfully targeted than HER2/neu. This review will summarize School of Medicine; Division of Hematology/Oncology; Department the pertinent biology of HER2/neu and the EGF receptor family to which it belongs, of Medicine; Department of Molecular with attention to the biological foundation for the design and clinical development Biology & Biochemistry; Sprague Hall, of the entire range of HER2/neu-targeted therapies, including efforts to mitigate Irvine, CA 92697, USA resistance mechanisms. In conjunction with the subsequent two parts (HER2/neu tissue [email protected] expression and current HER2/neu-targeted therapeutics), this comprehensive survey will identify opportunities and promising areas for future evaluation of HER2/neu- targeted therapies, highlighting the importance of HER2/neu as an increasingly important therapeutic target. Keywords: c-erbB2 • EGF receptor • EGFR • EGFR ligand • expression modulation • HER2/neu • monoclonal antibody • signaling network • targeted therapeutic • tyrosine kinase inhibitor • vaccine The history of the molecule known as c-erbB2 = neu, c-erbB3 = EGFR-3, and HER2/neu dates back to the earliest stud- eventually, c-erbB4 = EGFR-4) were estab- 10.4155/CLI.14.57 ies of virus-associated oncogenes. In 1979, lished [13] . The fact that the neu molecule studies of avian erythroblastosis virus iden- and coding sequence was originally identi- tified two putative viral oncogenes, v-erbA fied in the rat species and only recently has and v-erbB [1–3] .
    [Show full text]
  • Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor
    Pharmacological Research 120 (2017) 116–132 Contents lists available at ScienceDirect Pharmacological Research j ournal homepage: www.elsevier.com/locate/yphrs Invited Review Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas ∗ Robert Roskoski Jr. Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States a r t i c l e i n f o a b s t r a c t Article history: One Von Hippel-Lindau (VHL) tumor suppressor gene is lost in most renal cell carcinomas while the Received 14 March 2017 nondeleted allele exhibits hypermethylation-induced inactivation or inactivating somatic mutations. As Accepted 15 March 2017 a result of these genetic modifications, there is an increased production of VEGF-A and pro-angiogenic Available online 19 March 2017 growth factors in this disorder. The important role of angiogenesis in the pathogenesis of renal cell carcinomas and other tumors has focused the attention of investigators on the biology of VEGFs and Chemical compounds studied in this article: VEGFR1–3 and to the development of inhibitors of the intricate and multifaceted angiogenic pathways. Axitinib: (PubMED CID: 6450551) VEGFR1–3 contain an extracellular segment with seven immunoglobulin-like domains, a transmembrane Bevacizumab: (PubMED CID: 24801580) segment, a juxtamembrane segment, a protein kinase domain with an insert of about 70 amino acid Pozantinib: (PubMED CID: 25102847) residues, and a C-terminal tail. VEGF-A stimulates the activation of preformed VEGFR2 dimers by the Lenvatinib: (PubMED CID: 9823820) Pazopanib (PubMED CID: 10113978) auto-phosphorylation of activation segment tyrosines followed by the phosphorylation of additional Sorafenib: (PubMED CID: 216239) protein-tyrosines that recruit phosphotyrosine binding proteins thereby leading to signalling by the Sunitinib: (PubMed CID: 5329102) ERK1/2, AKT, Src, and p38 MAP kinase pathways.
    [Show full text]