A New Tongue-Orchid (Orchidaceae) in Southwest Spain: Serapias Occidentalis

Total Page:16

File Type:pdf, Size:1020Kb

A New Tongue-Orchid (Orchidaceae) in Southwest Spain: Serapias Occidentalis Anales del Jardín Botánico de Madrid Vol. 63(2): 131-143 July-December 2006 ISSN: 0211-1322 A new Tongue-orchid (Orchidaceae) in southwest Spain: Serapias occidentalis by Caspar Venhuis, Pepijn Venhuis & Albertine C. Ellis-Adam Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 118, 1098 SM, Amsterdam, The Netherlands [email protected] Abstract Resumen Serapias occidentalis is described from several populations Se describe Serapias occidentalis a partir de diferentes poblacio- (Campo Lugar, Obando and Aljucén) scattered over the Gua- nes (Campo Lugar, Obando y Aljucén) situadas a lo largo de la diana river basin in Extremadura, Spain. Morphological charac- cuenca del río Guadiana en Extremadura, España. Se analizan ters defining the new species are analysed, and differences with los caracteres morfológicos que definen la nueva especie y sus related Serapias taxa from the Iberian Peninsula and other Euro- diferencias con otras Serapias de la Península Ibérica y de Euro- pean countries are established. In addition, distribution, ecology pa. Además, se discuten diversos aspectos de su distribución, and reproduction are discussed. hábitat y reproducción. Keywords: Orchidaceae, Serapias, taxonomy, Spain, Ex- Palabras clave: Orchidaceae, Serapias, taxonomía, España, Ex- tremadura. tremadura. Introduction 1991; Delforge, 1995b, 2002). Most recent studies, however, report several other Serapias species cover- The genus Serapias L. (Tongue-orchids) comprises ing large parts of this distribution area and suggest 26 species (Delforge, 2002), with a predominantly that at least parts of the populations previously con- Mediterranean distribution. Its range extends from sidered as S. vomeracea would, in fact, be representa- the Azores and the Canaries in the west to the Cauca- tives of those species. The taxa concerned are S. stric- sus in the east, and north as far as Brittany (France) tiflora Welwitsch ex Veiga and S. elsae P. Delforge (S. (Gölz & Reinhard, 1980; Pérez Chiscano & al., 1991; parviflora group) and S. bergonii E.G. Camus, S. ori- Delforge, 1995b, 2002). entalis (Greuter) H. Baumann & Künkele, S. levanti- Venhuis & al. (in prep) performed multivariate sta- na H. Baumann & Künkele and S. feldwegiana H. tistical analyses on all Serapias species occurring in the Baumann & Künkele (S. vomeracea group). Iberian Peninsula and France and distinguished two According to Kreutz (2004), S. vomeracea consists main groups: a S. parviflora group and a S. vomeracea of three subspecies: S. vomeracea subsp. vomeracea group. These two groups were separated predomi- (Figs. 3c, d), S. vomeracea subsp. longipetala (Ten.) H. nantly on the basis of the epichile width, which varied Baumann & Künkele (Fig. 4a) and S. vomeracea between 3-8(9) mm and (7)8-28 mm, respectively. Se- subsp. istriaca (Perko) Kreutz (Fig. 4b). S. vomeracea rapias vomeracea (Burm. fil.) Briq. has been reported subsp. longipetala occurs in Italy and Greece (Bau- for nearly the entire European Mediterranean mann & Künkele, 1991) and S. vomeracea subsp. is- zone (Richter, 1890; Koch, 1907; Schlechter, 1923; triaca is endemic for Istria (Delforge, 2004). The dis- Hermann, 1956; Meusel & al., 1965; Nelson, tribution of S. vomeracea subsp. vomeracea probably 1968; Landwehr, 1977; Gölz & Reinhard, 1980; extends from the northeastern part of Spain (Benito Moore, 1980; Meikle, 1985; Pérez Chiscano & al., Ayuso & Tabuenca Marraco, 2001), Basque country 132 C. Venhuis & al. (Lizaur & Lazare, 2004), the lower Pyrenees, south- northern, central and southern Italy and Greece. ern France (Gölz & Reinhard, 1980) and southern Flowers from specimens of this subspecies are more Switzerland (Gölz & Reinhard, 1980; Moser & al., slender than S. vomeracea subsp. vomeracea and defi- 1999) to northern Italy (Gölz & Reinhard, 1980; Bau- nitely different from the plants from Extremadura. mann & Künkele, 1991; Kropf, 2002). Pérez Chiscano (1977) describes Extremaduran In the last 150 years, S. vomeracea and its synonyms populations that probably evolved by hybridisation –S. pseudocordigera (Sebastiani) Moricand and S. between S. vomeracea and S. lingua (= S. × intermedia longipetala (Tenore) Pollini– have often been report- Forest.), but in 1991 Pérez Chiscano & al. mentioned ed from the Iberian Peninsula. Intensive studies dur- no hybrids with any Serapias species. Devesa Alcaraz ing the past 20 years have improved insight into the (1995) notes that Extremaduran S. vomeracea and Serapias group. On the basis of these studies, we sup- S. cordigera often form transitions towards S. lingua. posed that earlier presentations of S. vomeracea (or Recently, Benito Ayuso & Tabuenca Marraco (2001) equivalent names) from predominantly southwestern suggested that individuals on photographs of S. coastal regions of the Iberian Peninsula by Pérez Lara vomeracea subsp. vomeracea, taken of populations in (1886), Coutinho (1913), Martínez Gámez (1921), Extremadura by Pérez Chiscano & al. (1991) differ to Camus & Camus (1928), Vicioso (1948), Bodegom some extent from S. vomeracea from the northeastern (1972), Landwehr (1977), Rivera & Cabezudo (1985), part of Spain. Confusion is further augmented by the Valdés & al. (1987), Buján & al. (1990) and Sáez & al. fact that Tyteca (1997), Kreutz (pers. comm., 2004), (2005) probably represent S. strictiflora (Fig. 4c) or Benito Ayuso (pers. comm., 2004) and Venhuis & al. S. elsae. Recent studies indeed confirm that S. vome- (2004) postulated that the individuals shown in these racea does not occur in northwestern Spain (Cor- photos display morphological similarities with S. tizo & Sahuquillo, 1999), Portugal (Tyteca, 1997; cordigera L, which occurs throughout Iberian Penin- Delforge, 2002; Venhuis & al., 2004, Sáez & al., 2005), sula (Willkomm, 1861; Nieschalk & Nieschalk, 1973; the province of Málaga (Lowe, 1998) and other south- Landwehr, 1977; Pérez Chiscano & al. 1991, Sáez & ern and central parts of Spain up to Madrid (Benito al., 2005). Ayuso & Tabuenca Marraco, 2001). However, reports On the basis of the morphological data presented of S. vomeracea by Willkomm (1861), Gandoger in this paper, the putative S. vomeracea from Ex- (1890), Montserrat (1962), Van der Sluys & González tremadura probably originated from hybridisation Artabe (1980), Romero & Rico (1989), Cebolla & Ri- between S. vomeracea subsp. vomeracea and S. cordi- vas (1994), Delforge (1995a) and Sáez & al. (2005) of gera. Consequently, these plants should be considered the northeastern part of Spain presumably involve a new taxon, which we propose to name S. occidenta- S. vomeracea subsp. vomeracea (Table 4; Figure 8). lis. This is supported by the map of distribution of S. vomeracea presented by Benito Ayuso & Tabuenca Methods Marraco (2001), which is based on observations to the north of Madrid and from more northeastern locali- In the spring of 2004 we compared all the Serapias ties. species that occur at the western part of the Mediter- In Extremadura, S. vomeracea was first reported by ranean zone (mainland of Spain, Portugal, France, Rivas Mateos (1931) as S. pseudocordigera. Subse- and western Italy) we sought stable and uniform quently, Rivas Goday (1964) used the name S. lon- characteristics that could distinguish between popu- gipetala for plants of the same region. More recently, lations of different regions. To get a representative Pérez Chiscano & al. (1991) mentioned S. vomeracea view, we studied three populations per species (Table subsp. vomeracea for Extremadura. However, a 1) and measured 25 randomly selected specimens of meticulous morphological study by us of this taxon each population, for a total of 75 specimens per from that region revealed significant differences from species. Vouchers are kept at the AMD herbarium data on populations collected in southern France and (Table 1). For each population, we measured fifteen western Italy, northern Italy by Gölz & Reinhard quantitative (Table 2) and eight qualitative charac- (1980) and Baumann & Künkele (1991) and Madrid ters; the hair density, distribution, curvation, shape by Benito Ayuso (pers. comm., 2005) for S. vomeracea and position of the epichile, the shape and lamellae subsp. vomeracea. We also compared our measure- position, hood position, the petal shape and the bract ments with data reported by Baumann & Künkele versus hood ratio. The three populations for each (1991) and data provided by Pellegrino (pers. comm., species were all chosen with a maximum possible dis- 2005) of S. vomeracea subsp. longipetala from tance (min. 50 km) between, to avoid spatial and ge- Anales del Jardín Botánico de Madrid 63(2): 131-143. July-December 2006. ISSN: 0211-1322 A new Tongue-orchid (Orchidaceae) in southwest Spain: Serapias occidentalis 133 Table 1. Sampled populations of the studied Serapias species belonging to the S. vomeracea group, including vouchers. Species Location Region Country Voucher S. cordigera Cotifo Algarve Portugal S. cordigera Badajoz Extremadura Spain S. cordigera Frejus Var France AMD122572-122573 S. perez-chiscanoi Badajoz Extremadura Spain S. perez-chiscanoi Aljucén Extremadura Spain S. perez-chiscanoi Trujillanos Extremadura Spain S. occidentalis Campo Lugar Extremadura Spain AMD122200-122202 S. occidentalis Obando Extremadura Spain AMD123300-123302 S. occidentalis Aljucén Extremadura Spain S. vomeracea subsp. vomeracea Arquettes-en-Val Aude France S. vomeracea subsp. vomeracea Pierrefeu-du-Var Var France S. vomeracea subsp. vomeracea Taggia Liguria Italy AMD122570
Recommended publications
  • Morphological Systematics of Serapias L.(Orchidaceae) in Southwest
    Pl. Syst. Evol. 265: 165–177 (2007) Plant Systematics DOI 10.1007/s00606-007-0519-0 and Evolution Printed in The Netherlands Morphological systematics of Serapias L. (Orchidaceae) in Southwest Europe C. Venhuis, P. Venhuis, J. G. B. Oostermeijer, and P. H. van Tienderen Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam, The Netherlands Received January 27, 2006; accepted January 18, 2007 Published online: April 30, 2007 Ó Springer-Verlag 2007 Abstract. We measured morphological characters while Sundermann (1980) only mentioned and relative DNA contents to assess variation and three. The distribution is predominantly Med- phylogenetic relationships among Serapias species in iterranean. Its range extends from the Azores three populations of each of the 10 putative taxa that and the Canaries in the west to the Caucasus in occur in Southwest Europe. DNA contents indicated the east, and as far north as Brittany (France) diploidy for most species, except for tetraploid S. (Go¨lz and Reinhard 1980; Perez Chiscano lingua and hexaploid S. olbia. Multivariate (discrimi- et al. 1991; Delforge 1995, 2002). The genus nant) analyses yielded two main groups: a small- flowered S. parviflora group and a large-flowered is considered monophyletic, based on genetic S. vomeracea group. Within the S. parviflora group, S. (Pridgeon et al. 1997; Bateman et al. 1997, elsae should be considered a large-flowered variation 2003) and morphological differences (Delforge of S. strictiflora. The geographically disjunct S. gre- 1995, 2002). Serapias is represented in south- garia and S. strictiflora are probably different taxa. In west Europe (Iberian Peninsula and southern the S.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Redalyc.Distinguishing Colour Variants of Serapias Perez-Chiscanoi
    UvA-DARE (Digital Academic Repository) Distinguishing colour variants of Serapias perez-chiscanoi (Orchidaceae) from related taxa on the Iberian Peninsula Venhuis, C.; Oostermeijer, J.G.B. DOI 10.3989/ajbm.2269 Publication date 2011 Document Version Final published version Published in Anales del Jardin Botanico de Madrid Link to publication Citation for published version (APA): Venhuis, C., & Oostermeijer, J. G. B. (2011). Distinguishing colour variants of Serapias perez- chiscanoi (Orchidaceae) from related taxa on the Iberian Peninsula. Anales del Jardin Botanico de Madrid, 68(1), 49-59. https://doi.org/10.3989/ajbm.2269 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:05 Oct 2021 Redalyc Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Venhuis, Caspar; Oostermeijer, J.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Taxonomic and Distributive Notes on Serapias Lingua Subsp. Tunetana (Orchidaceae), a Rare Endemic to Tunisia
    Collectanea Botanica 38: e005 enero-diciembre 2019 ISSN-L: 0010-0730 https://doi.org/10.3989/collectbot.2019.v38.005 Taxonomic and distributive notes on Serapias lingua subsp. tunetana (Orchidaceae), a rare endemic to Tunisia R. EL MOKNI1,2,3 & G. DOMINA4 1 University of Carthage, Laboratory of Botany and Plant Ecology (SNA-214), Department of Life Sciences, Faculty of Sciences of Bizerte, Jarzouna, TN-7021 Bizerte, Tunisia 2 University of Jendouba, Laboratory of Silvo-pastoral Resources, Silvo-Pastoral Institute of Tabarka, BP. 345, TN-8110 Tabarka, Tunisia 3 University of Monastir, Laboratory of Botany, Cryptogamy and Plant Biology, Faculty of Pharmacy of Monastir, Avenue Avicenna, TN-5000 Monastir, Tunisia 4 University of Palermo, Department of Agriculture, Food and Forest Sciences, viale delle Scienze, bldg. 4, IT-90128 Palermo, Italy ORCID iD. R. EL MOKNI: https://orcid.org/0000-0003-3849-1039, G. DOMINA: https://orcid.org/0000-0003-4184-398X Author for correspondence: G. Domina ([email protected]) Editor: L. Sáez Received 10 August 2018; accepted 2 October 2018; published on line 6 May 2019 Abstract TAXONOMIC AND DISTRIBUTIVE NOTES ON SERAPIAS LINGUA SUBSP. TUNETANA (ORCHIDACEAE), A RARE ENDEMIC TO TUNISIA.— Serapias lingua subsp. tunetana, a rare endemic orchid confined to Tunis, northern of Tunisia, has been rediscovered far away from its type locality nearly after 22 years. Since its first finding in 1996 and its description published in 2005, the subspecies has not been found again, and was presumed to be extinct, or the taxon was erroneously identified. A detailed description of the subspecies justifying an amendment to its description, a map of its current distribution and colour photographs are also provided.
    [Show full text]
  • Southern Maidenhair Fern and Stream Orchid in the Black Hills National Forest, South Dakota and Wyoming
    United States Department of Agriculture Conservation Assessment Forest Service for Southern Maidenhair Rocky Mountain Region Fern and Stream Orchid in Black Hills National Forest the Black Hills National Custer, South Dakota Forest South Dakota and April 2003 Wyoming J.Hope Hornbeck, Deanna Reyher, Carolyn Hull Sieg and Reed W. Crook Species Assessment of Southern Maidenhair Fern and Stream Orchid in the Black Hills National Forest, South Dakota and Wyoming J. Hope Hornbeck, Deanna J. Reyher, Carolyn Hull Sieg and Reed W. Crook J. Hope Hornbeck is a Botanist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. in Environmental Biology at The University of Montana and a M.S. in Plant Biology at the University of Minnesota-Twin Cities. Deanna J. Reyher is an Ecologist/Soil Scientist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. degree in Agronomy from the University of Nebraska- Lincoln. Carolyn Hull Sieg is a Research Plant Ecologist with the Rocky Mountain Research Station in Flagstaff, Arizona. She completed a B.S. in Wildlife Biology and M.S. in Range Science from Colorado State University and a Ph.D. in Range and Wildlife Management at Texas Tech University. Reed W. Crook is a Botanist with the Black Hills National Forest in Custer, South Dakota. He completed a B.S. in Botany at Brigham Young University, a M.S. in Plant Morphology and Ph.D. in Plant Systematics at the University of Georgia-Athens. EXECUTIVE SUMMARY Southern maidenhair fern (Adiantum capillus-veneris L.; Pteridaceae) is a cosmopolitan species that is widely distributed in southern North America.
    [Show full text]
  • Orchidaceae) by Imitation of Holes for Sleeping Solitary Male Bees (Hymenoptera
    69-73. Acta Bot. Need. 30(1/2), February 1981, p. Pollination of Serapias vomeracea Briq. (Orchidaceae) by imitation of holes for sleeping solitary male bees (Hymenoptera) 1 2 3 Amots Dafni Yariv Ivri andN.B.M. Brantjes 1 Institute of Evolution, Haifa University, Mount Carmel, Haifa 31 999, Israel 2 Kibbutz Ayeleth Ha'shahar, Israel 3 Vakgroep Plantensystematiek, Biologisch Centrum, Postbus 14, 9750 AA Haren (Gn), The Netherlands SUMMARY In two locations in Israel, bees were found to be sleeping in flowers ofSerapias vomeracea Briq. Of these and Ceratina too small to bees. Proposis spp. spp. were be pollinators, whereas Eucera spp., Andrena spp., Osmia spp. and Tetralonia spp., mostly males, pollinated. Pollination occurs when in the afternoon hours the bees waver from flower to flower. The bees rest In finally come to on a particular flower and remain there for the duration of the night. the morning, the bees which slept in the flowers, are warmed up as aresult ofsolar radiation which heats the flowers to 3°C above ambient temperature. Since the males of many Hymenoptera sleepin holes,the hypothesisis that the flowers mimic such holes. The shortness of the flower tube can be held responsible for the observed frequent changes from flower to flower, which is so important for pollinationefficiency. 1. INTRODUCTION Serapias vomeracea Briq. is a Mediterranean species found in fertile meadows, heaths, and dampwoods, from sea level up to 1000m. altitude(Duperrex 1965). this in habitats all the Mediterranean In Israel, species appears damp open over territory, mainly in dwarf shrub communities (‘Batha’) and in marsh fringes, without showing preferences to any particular soil (Dafni 1979).
    [Show full text]
  • ZNIEFF Continentales : Liste Des Espèces De Flore Remarquables En Région PACA
    Actualisation de l’inventaire des Zones Naturelles d’Intérêt Écologique, Faunistique et Floristique (ZNIEFF) de Provence-Alpes-Côte d’Azur ZNIEFF continentales : liste des espèces de flore remarquables en région PACA Version du 28/07/2016 Référentiel taxonomique : TAXREF v5.0 Les alismatales, apiales et asparagales PHYLUM CLASSE ORDRE FAMILLE CD_REF RANG NOM_VALIDE Plantae Equisetopsida Alismatales Alismataceae 81260 ES Alisma gramineum Lej., 1811 Plantae Equisetopsida Alismatales Cymodoceaceae 93774 ES Cymodocea nodosa (Ucria) Asch., 1869 Plantae Equisetopsida Alismatales Posidoniaceae 115222 ES Posidonia oceanica (L.) Delile, 1813 Plantae Equisetopsida Alismatales Potamogetonaceae 130599 ES Zannichellia palustris L., 1753 Plantae Equisetopsida Apiales Apiaceae 87074 ES Bupleurum odontites L., 1753 Plantae Equisetopsida Apiales Apiaceae 98032 ES Ferulago campestris (Besser) Grecescu, 1898 Plantae Equisetopsida Apiales Apiaceae 104456 ES Katapsuxis silaifolia (Jacq.) Raf., 1840 Plantae Equisetopsida Apiales Apiaceae 108739 ES Molopospermum peloponnesiacum (L.) W.D.J.Koch, 1824 Plantae Equisetopsida Apiales Apiaceae 113586 ES Pimpinella peregrina L., 1753 Plantae Equisetopsida Asparagales Amaryllidaceae 81358 ES Allium coppoleri Tineo, 1827 Plantae Equisetopsida Asparagales Amaryllidaceae 81525 ES Allium subhirsutum L., 1753 Plantae Equisetopsida Asparagales Amaryllidaceae 81537 ES Allium trifoliatum Cirillo, 1792 Plantae Equisetopsida Asparagales Amaryllidaceae 99233 ES Galanthus nivalis L., 1753 Plantae Equisetopsida Asparagales Amaryllidaceae
    [Show full text]
  • Orchidoideae: Orchidaceae) Author(S): H
    The Phylogeny and Classification of the Diseae (Orchidoideae: Orchidaceae) Author(s): H. P. Linder and H. Kurzweil Source: Annals of the Missouri Botanical Garden, Vol. 81, No. 4 (1994), pp. 687-713 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/2399916 Accessed: 27-07-2016 11:10 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden This content downloaded from 137.158.114.36 on Wed, 27 Jul 2016 11:10:19 UTC All use subject to http://about.jstor.org/terms THE PHYLOGENY AND H. P. Linder2 and H. Kurzweil2'3 CLASSIFICATION OF THE DISEAE (ORCHIDOIDEAE: ORCHIDACEAE)l ABSTRACT The subtribal classification of the Diseae (Orchidoideae) is reviewed in light of the available morphological, leaf anatomical, and palynological data. These data are critically assessed, and the more prominent features are illustrated. The data are analyzed cladistically, and the robustness of the various components of the most parsimonious tree is assessed by a bootstrap analysis. Based on the cladistic analysis and the bootstrap analysis, a new classification is proposed for the Diseae.
    [Show full text]
  • Dottorato Di Ricerca
    Università degli Studi di Cagliari DOTTORATO DI RICERCA IN SCIENZE E TECNOLOGIE DELLA TERRA E DELL'AMBIENTE Ciclo XXXI Patterns of reproductive isolation in Sardinian orchids of the subtribe Orchidinae Settore scientifico disciplinare di afferenza Botanica ambientale e applicata, BIO/03 Presentata da: Dott. Michele Lussu Coordinatore Dottorato Prof. Aldo Muntoni Tutor Dott.ssa Michela Marignani Co-tutor Prof.ssa Annalena Cogoni Dott. Pierluigi Cortis Esame finale anno accademico 2018 – 2019 Tesi discussa nella sessione d’esame Febbraio –Aprile 2019 2 Table of contents Chapter 1 Abstract Riassunto………………………………………………………………………………………….. 4 Preface ………………………………………………………………………………………………………. 6 Chapter 2 Introduction …………………………………………………………………………………………………. 8 Aim of the study…………………………………………………………………………………………….. 14 Chapter 3 What we didn‘t know, we know and why is important working on island's orchids. A synopsis of Sardinian studies……………………………………………………………………………………………………….. 17 Chapter 4 Ophrys annae and Ophrys chestermanii: an impossible love between two orchid sister species…………. 111 Chapter 5 Does size really matter? A comparative study on floral traits in two different orchid's pollination strategies……………………………………………………………………………………………………. 133 Chapter 6 General conclusions………………………………………………………………………………………... 156 3 Chapter 1 Abstract Orchids are globally well known for their highly specialized mechanisms of pollination as a result of their complex biology. Based on natural selection, mutation and genetic drift, speciation occurs simultaneously in organisms linking them in complexes webs called ecosystems. Clarify what a species is, it is the first step to understand the biology of orchids and start protection actions especially in a fast changing world due to human impact such as habitats fragmentation and climate changes. I use the biological species concept (BSC) to investigate the presence and eventually the strength of mechanisms that limit the gene flow between close related taxa.
    [Show full text]
  • Download Download
    Firenze University Press Caryologia www.fupress.com/caryologia International Journal of Cytology, Cytosystematics and Cytogenetics Comparison of the Evolution of Orchids with that of Bats Citation: A. Lima-de-Faria (2020) Comparison of the Evolution of Orchids with that of Bats. Caryologia 73(2): 51-61. doi: 10.13128/caryologia-891 Antonio Lima-de-Faria Received: February 12, 2020 Professor Emeritus of Molecular Cytogenetics, Lund University, Lund, Sweden E-mail: [email protected] Accepted: April 16, 2020 Published: July 31, 2020 Abstract. The evolution of orchids and bats is an example of DNA’s own evolution which has resulted in structures and functions which are not necessarily related to any Copyright: © 2020 A. Lima-de-Faria. obvious advantage to the organism. The flowers of orchids resemble: humans, apes, liz- This is an open access, peer-reviewed article published by Firenze University ards, frogs and even shoes. The faces of bats resemble plant leaves but also horseshoes. Press (http://www.fupress.com/caryo- These similarities are not accidental because they emerge repeatedly in different gen- logia) and distributed under the terms era and different families. This evolutionary situation bewildered botanists and zoolo- of the Creative Commons Attribution gists for many years, but is now elucidated by the molecular unification of plants and License, which permits unrestricted animals derived from the following evidence: (1) Contrary to expectation, plant and use, distribution, and reproduction animal cells (including those of humans) could be fused and the human chromosomes in any medium, provided the original were seen dividing in the plant cytoplasm. (2) Orchids, bats and humans have about author and source are credited.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    A MONOGRAPH OF THE GENUS LOCKHARTIA (ORCHIDACEAE: ONCIDIINAE) By MARIO ALBERTO BLANCO-COTO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Mario Alberto Blanco-Coto 2 To my parents, who have always supported and encouraged me in every way. 3 ACKNOWLEDGMENTS Many individuals and institutions made the completion of this dissertation possible. First, I thank my committee chair, Norris H. Williams, for his continuing support, encouragement and guidance during all stages of this project, and for providing me with the opportunity to visit and do research in Ecuador. W. Mark Whitten, one of my committee members, also provided much advice and support, both in the lab and in the field. Both of them are wonderful sources of wisdom on all matters of orchid research. I also want to thank the other members of my committee, Walter S. Judd, Douglas E. Soltis, and Thomas J. Sheehan for their many comments, suggestions, and discussions provided. Drs. Judd and Soltis also provided many ideas and training through courses I took with them. I am deeply thankful to my fellow lab members Kurt Neubig, Lorena Endara, and Iwan Molgo, for the many fascinating discussions, helpful suggestions, logistical support, and for providing a wonderful office environment. Kurt was of tremendous help in the lab and with Latin translations; he even let me appropriate and abuse his scanner. Robert L. Dressler encouraged me to attend the University of Florida, provided interesting discussions and insight throughout the project, and was key in suggesting the genus Lockhartia as a dissertation subject.
    [Show full text]