On Pentose S U G a R S and Their Applications

Total Page:16

File Type:pdf, Size:1020Kb

On Pentose S U G a R S and Their Applications In BIOCORE, VTT (Finland) are in- milk coagulant in cheese curd for- vestigating the production of xylitol mation. Xylonic acid has also been using yeast. To this end, they have shown to be an excellent substitute developed high-performing yeast for gluconic acid in cement formula- strains that convert xylose pres- tions, acting as a cement retardant, PARTNERS ent in biorefinery hydrolysates into providing better control of the setting xylitol in a single bioconversion ope- time. Interestingly, the setting time WORKING A biorefinery concept for the transformation of ration. More than 100 g L-1 xylitol of cement containing xylonic acid is biomass into 2nd generation fuels and polymers have been produced at high rate two-fold shorter than that of cement ON PENTOSES and yield (0.7-0.8 g g-1) from the containing gluconic acid, underlining BIOCORE pentose-rich stream, even the specific character of xylonic acid. though this contains high concen- Regarding other applications, xylonic trations of formic acid. Higher rates acid also figures in the top 30 buil- and titers are expected in less ding block chemicals from biomass, VTT (Finland) inhibitory hydrolysates, but are de- described by the US National Re- Contact: Merja Penttilä pendent on the xylose concentration newable Energy Laboratory, and has [email protected] TECHNICAL NOTE available. Residual glucose in pen- been used as a precursor to synthe- Work focus: xylitol tose-rich stream provides energy for size 1,2,4-butanetriol. Moreover, and xylonic acid production the yeast, which also removes other the use of xylonic acid as precursor ON PENTOSE components from the hydrolysate, for the synthesis of polyamides has DLO (The Netherlands) thus facilitating the downstream been published. Nevertheless, des- Contact: Richard Gosselink processing. pite the potential of xylonic acid, only SUGARS very limited commercial production [email protected] appears to exist at this time. Work focus: Furfural production and the development of a biobased diisocyanate AND THEIR In BIOCORE, scientists in VTT (Fin- land) have developed a yeast strain CIMV (France) for the production of high concentra- Contact : Bouchra Benjelloun APPLICATIONS tions of xylonic acid at low pH. More [email protected] than 140 g L-1 have been produced Work focus : biomass fractionation at pH 3, at a rate of ~1 g L-1 h-1. and C5-rich syrup production Xylonic acid Higher yields, titers and rates will Xylonic acid is a five-carbon sugar no doubt be achieved after further INRA (France) acid that naturally occurs in some process optimization. This strain also Contact : Isabelle Meynial Salles foodstuffs. In industrial foods xylonic performs well at higher pH, at which [email protected] acid could be used as a replacement even 170 g L-1 have been produced. Work focus : development of for gluconic acid, thus acting as a The host strain has an excellent tole- an isopropanol-producing strain latent acid in bakery products, an rance to most biomass hydrolysate acidulant in meat products, or as a inhibitors. CONCLUSION The development of biorefineries using advanced fractionation technologies, BIOCORE coordinator BIOCORE manager such as organosolv, to process lignocellulosic biomass holds the potential Michael O’Donohue Aurélie Faure to open up new valorization routes for pentose sugars. While significant INRA INRA Transfert R&D is still required to develop cost-efficient downstream processing [email protected] [email protected] of the pentose-rich syrup produced by CIMV, research performed by BIOCORE researchers is revealing how pure pentose sugars can be used to manufacture useful products. The BIOCORE project benefits from a budget of 20.3 million €, of which 13.9 million € represents aid from the European Union within http://www.biocore-europe.org the framework seven (FP7) research program under the grant agreement n°FP7-241566. EDITORIAL NOTE PENTOSES TODAY Furfural which the organic acids already Acid dehydration of D-xylose and L- present in the pentose syrup act as arabinose leads to the formation of catalysts for the formation of furfural The European FP7 project BIOCORE converting pentose sugars into use- Pentose sugars are primarily obtained sweeteners (Lenzing, Austria), a company furfural, an industrial chemical that (Figure 3), thus obviating the need for focuses on a lignocellulosic biorefi- ful products. In this technical note, from woody biomass and various crop that sources xylose from black liquor ari- was first produced by the Quaker the addition of mineral acids. So far, nery concept, which includes deri- some of BIOCORE’s results are residues. However, despite their humble sing from bisulfite pulping of beechwood. Oats Co. in Cedar Rapids, Iowa. As results reveal that the pentoses (pri- ving value from hitherto underused related in order to better visualize origins, the current market value of these In Asia, xylose is made from feedstocks, a chemical, furfural is used directly marily xylose mono- and oligomers) components, such as pentose how pentose-based products will two sugars is high (98% pure D-xylose such as coconut husks. China boasts many as a solvent or as an intermediate are effectively converted to furfural, sugars. To achieve this, BIOCORE form part of tomorrow’s bio-based sells for 2000 - 3000 € per ton), mainly xylose/xylitol producing facilities, although for the production of tetrahydrofu- with a yield greater than 50% and partners are devising a range of commercial products. because the production of these sugars is recently several of these have closed down ran, an important industrial solvent, a selectivity of 80% , which is better methods aimed at extracting and costly, and also because xylose is mostly due to the application of increasingly tight or furfuryl alcohol, a chemical that than commercial processes. Having converted, in an integrated way, to xylitol environmental regulations. is principally used to manufacture achieved this result, DLO scientists BIOREFINING AND PENTOSES (see below). Arabinose is classified as a resins for bonding foundry sands that are now studying how to best isolate rare sugar that is only produced in small Analysts predict that the xylitol market compose foundry molds. Currently furfural from the reaction medium. amounts, being used as a chemical for will undergo significant growth once suf- furfural is made directly from agri- Driven by the glucose to ethanol chal- specialty applications and as a food in- ficient quantities of industrial grade, cost cultural raw materials in a continuous Bioenergy Crop Plant Cells Xylitol lenge, the extraction and deconstruc- gredient in Japan. Regarding xylose, this competitive xylose (>98% pure) become process that employs sulphuric acid. Xylitol is a five-carbon sugar alcohol tion of cellulose have been the focus sugar can be produced from black liquor, a available. Therefore, the main challenge is However, it is expected that advanced that is best known for its sweete- of much research over the last few byproduct of dissolving pulp manufacture. to lower the cost of xylose and arabinose biorefining will generate pentose-rich ning capacity, which exceeds that of decades. However, economically- A major European producer is Danisco extraction and purification. hydrolysates that will constitute new sucrose. As such, it is an excellent Plant Cell Wall important crops, such as cereals, raw materials for this industry. Today, artificial sweetener that is now used non-food crops and hardwoods, USES OF D-XYLOSE FOR THE MANUFACTURE about 90 percent of furfural produc- widely by the confectionary industry, also contain up to 30% dry weight of tion capacity is present in just three being responsible for the cold, fresh hemicelluloses, which are mainly ara- OF INDUSTRIAL PRODUCTS countries, China, the biggest produ- sensation of certain chewing gums Cellulose Lignin binoxylans composed of D-xylose and Hemicellulose cer, South Africa and the Dominican for example. Xylitol is also used for Microfibril Cellulose L-arabinose, or pentose sugars. Cur- C5 ethanol fine example is Clostridium acetobutylicum, Republic, with most furfural being caries prevention. However, xylitol Fig. 1 – Plant cell wall utilization of lignin, rent uses for these sugars are limited, hemicellulose and cellulose. © Elsevier - Several decades of research have been de- an anaerobic bacterium that for over half a converted into furfuryl alcohol. is also increasingly used in other partly due to the fact that high purity License Number: 3012501219608. voted to the development of microbial strains century formed the basis of the industrial industrial sectors, for example in D-xylose and L-arabinose are not yet S. cerevisiae that can produce ethanol using ABE (acetone-butanol-ethanol) process, In BIOCORE, scientists at DLO are pharmaceutical and cosmetic pro- produced as commodity chemicals. to breakdown the biomass into its D-xylose. The engineering strategies aim to which primarily manufactured acetone, pro- aiming to use furfural to prepare a ducts such as toothpaste, fluoride However, their future use as platform component parts, cellulose, lignins drive D-xylose into the pentose phosphate ducing butanol and ethanol as co-products. biobased diisocyanate for the for- tablets and mouthwashes and has intermediates will be necessary in and pentose sugars from feedstocks, pathway (PPP) through its conversion into the This process was abandoned after 1945, mulation of polyurethanes, which been tested as a co-monomer with order to ensure the sustainability and such as wheat straw, birchwood or ketose derivative, D-xylulose. Once phospho- only because of the availability of cheaper can be used in coating and foam terephthalatic or sebacic acid for economic viability of lignocellulosic poplar. The pentose sugars are rylated, D-xylulose-5-phosphate can enter acetone made from petroleum resources. applications. To achieve this, DLO polyester production. The current biomass value chains and to avoid obtained in an impure liquid stream the central metabolism of S. cerevisae via scientists submit the pentose-rich global demand for xylitol is approxi- excessive use of D-glucose.
Recommended publications
  • Pentose PO4 Pathway, Fructose, Galactose Metabolism.Pptx
    Pentose PO4 pathway, Fructose, galactose metabolism The Entner Doudoroff pathway begins with hexokinase producing Glucose 6 PO4 , but produce only one ATP. This pathway prevalent in anaerobes such as Pseudomonas, they doe not have a Phosphofructokinase. The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt) is a biochemical pathway parallel to glycolysis that generates NADPH and pentoses. While it does involve oxidation of glucose, its primary role is anabolic rather than catabolic. There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of 5-carbon sugars. For most organisms, the pentose phosphate pathway takes place in the cytosol. For each mole of glucose 6 PO4 metabolized to ribulose 5 PO4, 2 moles of NADPH are produced. 6-Phosphogluconate dh is not only an oxidation step but it’s also a decarboxylation reaction. The primary results of the pathway are: The generation of reducing equivalents, in the form of NADPH, used in reductive biosynthesis reactions within cells (e.g. fatty acid synthesis). Production of ribose-5-phosphate (R5P), used in the synthesis of nucleotides and nucleic acids. Production of erythrose-4-phosphate (E4P), used in the synthesis of aromatic amino acids. Transketolase and transaldolase reactions are similar in that they transfer between carbon chains, transketolases 2 carbon units or transaldolases 3 carbon units. Regulation; Glucose-6-phosphate dehydrogenase is the rate- controlling enzyme of this pathway. It is allosterically stimulated by NADP+. The ratio of NADPH:NADP+ is normally about 100:1 in liver cytosol.
    [Show full text]
  • Lecture 7 - the Calvin Cycle and the Pentose Phosphate Pathway
    Lecture 7 - The Calvin Cycle and the Pentose Phosphate Pathway Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire 1 Introduction The Calvin cycle Text The dark reactions of photosynthesis in green plants Reduces carbon from CO2 to hexose (C6H12O6) Requires ATP for free energy and NADPH as a reducing agent. 2 2 Introduction NADH versus Text NADPH 3 3 Introduction The Pentose Phosphate Pathway Used in all organisms Glucose is oxidized and decarboxylated to produce reduced NADPH Used for the synthesis and degradation of pentoses Shares reactions with the Calvin cycle 4 4 1. The Calvin Cycle Source of carbon is CO2 Text Takes place in the stroma of the chloroplasts Comprises three stages Fixation of CO2 by ribulose 1,5-bisphosphate to form two 3-phosphoglycerate molecules Reduction of 3-phosphoglycerate to produce hexose sugars Regeneration of ribulose 1,5-bisphosphate 5 5 1. Calvin Cycle Three stages 6 6 1.1 Stage I: Fixation Incorporation of CO2 into 3-phosphoglycerate 7 7 1.1 Stage I: Fixation Rubisco: Ribulose 1,5- bisphosphate carboxylase/ oxygenase 8 8 1.1 Stage I: Fixation Active site contains a divalent metal ion 9 9 1.2 Rubisco Oxygenase Activity Rubisco also catalyzes a wasteful oxygenase reaction: 10 10 1.3 State II: Formation of Hexoses Reactions similar to those of gluconeogenesis But they take place in the chloroplasts And use NADPH instead of NADH 11 11 1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate Involves a sequence of transketolase and aldolase reactions. 12 12 1.3 State III:
    [Show full text]
  • The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance
    International Journal of Molecular Sciences Review The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance Isabella Giacomini 1, Eugenio Ragazzi 1 , Gianfranco Pasut 2 and Monica Montopoli 1,3,* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Egidio Meneghetti 2, 35131 Padova, Italy; [email protected] (I.G.); [email protected] (E.R.) 2 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padova, Italy; [email protected] 3 Veneto Institute of Molecular Medicine, Via Giuseppe Orus 2, 35129 Padova, Italy * Correspondence: [email protected]; Tel.: +39-049-827-5090 Received: 30 December 2019; Accepted: 29 January 2020; Published: 31 January 2020 Abstract: Cisplatin is the first-line treatment for different types of solid tumors, such as ovarian, testicular, bladder, cervical, head and neck, lung, and esophageal cancers. The main problem related to its clinical use is the onset of drug resistance. In the last decades, among the studied molecular mechanisms of cisplatin resistance, metabolic reprogramming has emerged as a possible one. This review focuses on the pentose phosphate pathway (PPP) playing a pivotal role in maintaining the high cell proliferation rate and representing an advantage for cancer cells. In particular, the oxidative branch of PPP plays a role in oxidative stress and seems to be involved in cisplatin resistance. In light of these considerations, it has been demonstrated that overexpression and higher enzymatic activity of different enzymes of both oxidative and non-oxidative branches (such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transketolase) increase cisplatin resistance, and their silencing or combined treatment with cisplatin could restore cisplatin sensitivity.
    [Show full text]
  • Carbohydrates: Structure and Function
    CARBOHYDRATES: STRUCTURE AND FUNCTION Color index: . Very important . Extra Information. “ STOP SAYING I WISH, START SAYING I WILL” 435 Biochemistry Team *هذا العمل ﻻ يغني عن المصدر المذاكرة الرئيسي • The structure of carbohydrates of physiological significance. • The main role of carbohydrates in providing and storing of energy. • The structure and function of glycosaminoglycans. OBJECTIVES: 435 Biochemistry Team extra information that might help you 1-synovial fluid: - It is a viscous, non-Newtonian fluid found in the cavities of synovial joints. - the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement O 2- aldehyde = terminal carbonyl group (RCHO) R H 3- ketone = carbonyl group within (inside) the compound (RCOR’) 435 Biochemistry Team the most abundant organic molecules in nature (CH2O)n Carbohydrates Formula *hydrate of carbon* Function 1-provides important part of energy Diseases caused by disorders of in diet . 2-Acts as the storage form of energy carbohydrate metabolism in the body 3-structural component of cell membrane. 1-Diabetesmellitus. 2-Galactosemia. 3-Glycogen storage disease. 4-Lactoseintolerance. 435 Biochemistry Team Classification of carbohydrates monosaccharides disaccharides oligosaccharides polysaccharides simple sugar Two monosaccharides 3-10 sugar units units more than 10 sugar units Joining of 2 monosaccharides No. of carbon atoms Type of carbonyl by O-glycosidic bond: they contain group they contain - Maltose (α-1, 4)= glucose + glucose -Sucrose (α-1,2)= glucose + fructose - Lactose (β-1,4)= glucose+ galactose Homopolysaccharides Heteropolysaccharides Ketone or aldehyde Homo= same type of sugars Hetero= different types Ketose aldose of sugars branched unBranched -Example: - Contains: - Contains: Examples: aldehyde group glycosaminoglycans ketone group.
    [Show full text]
  • 1. Nucleotides A. Pentose Sugars – 5-Carbon Sugar 1) Deoxyribose – in DNA 2) Ribose – in RNA B. Phosphate Group C. Nitroge
    1. Nucleotides a. Pentose sugars – 5-Carbon sugar 1) Deoxyribose – in DNA 2) Ribose – in RNA b. Phosphate group c. Nitrogenous bases 1) Purines a) Adenine b) Guanine 2) Pyrimidines a) Cytosine b) Thymine 2. Types of Nucleic Acids a. DNA 1) Locations 2) Functions b. RNA 1) Locations 2) Functions E. High Energy Biomolecules 1. Adenosine triphosphate a. Uses 1) Active transport 2) Movement 3) Biosynthesis reactions b. Regeneration 1) ADP + Pi + Energy → ATP 4. Classes of proteins a. Structural – ex. Collagen, keratin b. Transport – Hemoglobin, many β-globulins c. Contractile – Actin and Myosin of muscle tissue d. Regulatory - Hormones e. Immunologic - Antibodies f. Clotting – Thrombin and Fibrin g. Osmotic - Albumin h. Catalytic – Enzymes 1) Characteristics of enzymes • Proteins (most); ribonucleoproteins (few/ribozymes) • Act as organic catalysts • Lower the activation energy of reactions • Not changed by the reaction • Bind to their substrates o Lock-and-key model of enzyme activity o Induced-fit model • Highly specific • Named by adding -ase to substrate name; e.g., maltose/maltase • May require cofactors which may be: o Nonprotein metal ions such as copper, manganese, potassium, sodium o Small organic molecules known as coenzymes. The B vitamins like thiamine (B1) riboflavin (B2) and nicotinamide are precursors of coenzymes. • May require activation; e.g., pepsinogen pepsin in stomach chief cells 4. Factors Affecting Enzyme Action • pH o pepsin (stomach) @ pH = 2; trypsin (small int.) @ pH = 8 • Temperature o Denatured by high temp’s. • Enzyme inhibitors o Competitive inhibitors o Noncompetitive inhibitors • Effect of substrate concentration and reversible reactions and the Law of Mass D.
    [Show full text]
  • PENTOSE PHOSPHATE PATHWAY — Restricted for Students Enrolled in MCB102, UC Berkeley, Spring 2008 ONLY
    Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 5 Reading: Ch. 14 of Principles of Biochemistry, “Glycolysis, Gluconeogenesis, & Pentose Phosphate Pathway.” PENTOSE PHOSPHATE PATHWAY This pathway produces ribose from glucose, and it also generates 2 NADPH. Two Phases: [1] Oxidative Phase & [2] Non-oxidative Phase + + Glucose 6-Phosphate + 2 NADP + H2O Ribose 5-Phosphate + 2 NADPH + CO2 + 2H ● What are pentoses? Why do we need them? ◦ DNA & RNA ◦ Cofactors in enzymes ● Where do we get them? Diet and from glucose (and other sugars) via the Pentose Phosphate Pathway. ● Is the Pentose Phosphate Pathway just about making ribose sugars from glucose? (1) Important for biosynthetic pathways using NADPH, and (2) a high cytosolic reducing potential from NADPH is sometimes required to advert oxidative damage by radicals, e.g., ● - ● O2 and H—O Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Two Phases of the Pentose Pathway Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY NADPH vs. NADH Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Oxidative Phase: Glucose-6-P Ribose-5-P Glucose 6-phosphate dehydrogenase. First enzymatic step in oxidative phase, converting NADP+ to NADPH. Glucose 6-phosphate + NADP+ 6-Phosphoglucono-δ-lactone + NADPH + H+ Mechanism. Oxidation reaction of C1 position. Hydride transfer to the NADP+, forming a lactone, which is an intra-molecular ester.
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • 8| Nucleotides and Nucleic Acids
    8| Nucleotides and Nucleic Acids © 2013 W. H. Freeman and Company CHAPTER 8 Nucleotides and Nucleic Acids Key topics: – Biological function of nucleotides and nucleic acids – Structures of common nucleotides – Structure of double‐stranded DNA – Structures of ribonucleic acids – Denaturation and annealing of DNA – Chemistry of nucleic acids; mutagenesis Functions of Nucleotides and Nucleic Acids • Nucleotide Functions: – Energy for metabolism (ATP) – Enzyme cofactors (NAD+) –Signal transduction (cAMP) • Nucleic Acid Functions: – Storage of genetic info (DNA) – Transmission of genetic info (mRNA) –Processing of genetic information (ribozymes) –Protein synthesis (tRNA and rRNA) Nucleotides and Nucleosides • Nucleotide = – Nitrogeneous base –Pentose – Phosphate • Nucleoside = – Nitrogeneous base –Pentose • Nucleobase = – Nitrogeneous base Phosphate Group •Negatively charged at neutral pH • Typically attached to 5’ position – Nucleic acids are built using 5’‐triphosphates •ATP, GTP, TTP, CTP – Nucleic acids contain one phosphate moiety per nucleotide •May be attached to other positions Other Nucleotides: Monophosphate Group in Different Positions Pentose in Nucleotides • ‐D‐ribofuranose in RNA • ‐2’‐deoxy‐D‐ribofuranose in DNA •Different puckered conformations of the sugar ring are possible Nucleobases •Derivatives of pyrimidine or purine • Nitrogen‐containing heteroaromatic molecules •Planar or almost planar structures •Absorb UV light around 250–270 nm Pyrimidine Bases • Cytosine is found in both DNA and RNA •Thymineis found only in DNA
    [Show full text]
  • De Novo Nucleic Acids: a Review of Synthetic Alternatives to DNA and RNA That Could Act As † Bio-Information Storage Molecules
    life Review De Novo Nucleic Acids: A Review of Synthetic Alternatives to DNA and RNA That Could Act as y Bio-Information Storage Molecules Kevin G Devine 1 and Sohan Jheeta 2,* 1 School of Human Sciences, London Metropolitan University, 166-220 Holloway Rd, London N7 8BD, UK; [email protected] 2 Network of Researchers on the Chemical Evolution of Life (NoR CEL), Leeds LS7 3RB, UK * Correspondence: [email protected] This paper is dedicated to Professor Colin B Reese, Daniell Professor of Chemistry, Kings College London, y on the occasion of his 90th Birthday. Received: 17 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules.
    [Show full text]
  • Nucleotides and Nucleic Acids
    CHAPTER 8 Nucleotides and Nucleic Acids Functions of Nucleotides and Nucleic Acids • Nucleotide Functions: – Energy for metabolism (ATP) – Enzyme cofactors (NAD+) – Signal transduction (cAMP) • Nucleic Acid Functions: – Storage of genetic info (DNA) – Transmission of genetic info (mRNA) – Processing of genetic information (ribozymes) – Protein synthesis (tRNA and rRNA) Nucleotides and Nucleosides • Nucleotide = – Nitrogeneous base – Pentose – Phosphate • Nucleoside = – Nitrogeneous base – Pentose • Nucleobase = – Nitrogeneous base Phosphate Group • Negatively charged at neutral pH • Typically attached to 5’ position – Nucleic acids are built using 5’- triphosphates • ATP, GTP, TTP, CTP – Nucleic acids contain one phosphate moiety per nucleotide • May be attached to other positions Other Nucleotides: Monophosphate Group in Different Positions Pentose in Nucleotides • -D-ribofuranose in RNA • -2’-deoxy-D-ribofuranose in DNA • Different puckered conformations of the sugar ring are possible Purine Bases • Adenine and guanine are found in both RNA and DNA • Also good H-bond donors and acceptors • Adenine pKa at N1 is 3.8 • Guanine pKa at N7 is 2.4 • Neutral molecules at pH 7 • Derivatives of pyrimidine or purine • Nitrogen-containing heteroaromatic molecules • Planar or almost planar structures • Absorb UV light around 250–270 nm Pyrimidine Bases • Cytosine is found in both DNA and RNA • Thymine is found only in DNA • Uracil is found only in RNA • All are good H-bond donors and acceptors • Cytosine pKa at N3 is 4.5 • Thymine pKa at N3 is 9.5
    [Show full text]
  • Dietary Fiber, Atherosclerosis, and Cardiovascular Disease
    nutrients Communication Dietary Fiber, Atherosclerosis, and Cardiovascular Disease Ghada A. Soliman Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York, Graduate School of Public Health and Health Policy, 55 West 125th St, New York, NY 10027, USA; [email protected]; Tel.: +1-646-364-9515 Received: 25 March 2019; Accepted: 20 May 2019; Published: 23 May 2019 Abstract: Observational studies have shown that dietary fiber intake is associated with decreased risk of cardiovascular disease. Dietary fiber is a non-digestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber. Dietary fibers and lignin are intrinsic to plants and are classified according to their water solubility properties as either soluble or insoluble fibers. Water-soluble fibers include pectin, gums, mucilage, fructans, and some resistant starches. They are present in some fruits, vegetables, oats, and barley. Soluble fibers have been shown to lower blood cholesterol by several mechanisms. On the other hand, water-insoluble fibers mainly include lignin, cellulose, and hemicellulose; whole-grain foods, bran, nuts, and seeds are rich in these fibers. Water-insoluble fibers have rapid gastric emptying, and as such may decrease the intestinal transit time and increase fecal bulk, thus promoting digestive regularity. In addition to dietary fiber, isolated and extracted fibers are known as functional fiber and have been shown to induce beneficial health effects when added to food during processing. The recommended daily allowances (RDAs) for total fiber intake for men and women aged 19–50 are 38 gram/day and 25 gram/day, respectively.
    [Show full text]
  • Positron Emission Tomography Probe Demonstrates a Striking Concentration of Ribose Salvage in the Liver
    Positron emission tomography probe demonstrates a striking concentration of ribose salvage in the liver Peter M. Clarka,1, Graciela Floresb,c, Nikolai M. Evdokimovb,d, Melissa N. McCrackenb, Timothy Chaia, Evan Nair-Gillb, Fiona O’Mahonye, Simon W. Beavene, Kym F. Faullf,g, Michael E. Phelpsb,c,1, Michael E. Jungd, and Owen N. Wittea,b,h,i,1 Departments of aMicrobiology, Immunology, and Molecular Genetics, bMolecular and Medical Pharmacology, dChemistry and Biochemistry, and gPsychiatry and Biobehavioral Sciences, cCrump Institute for Molecular Imaging, eDivision of Digestive Diseases, fPasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, hEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and iHoward Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 Contributed by Michael E. Phelps, June 5, 2014 (sent for review March 10, 2014) PET is a powerful technique for quantifying and visualizing bio- zyme extracts (2, 7). Additionally, fasting serum ribose concen- chemical pathways in vivo. Here, we develop and validate a trations (∼100 μM) in humans are similar to plasma and serum novel PET probe, [18F]-2-deoxy-2-fluoroarabinose ([18F]DFA), for concentrations of other gluconeogenic substrates, including pyru- in vivo imaging of ribose salvage. DFA mimics ribose in vivo and vate (∼50 μM) and glycerol (∼100 μM) (8, 9). Finally, the con- accumulates in cells following phosphorylation by ribokinase and 18 version of ribose to glucose requires less energy and reducing further metabolism by transketolase. We use [ F]DFA to show power than either pyruvate or glycerol (1). that ribose preferentially accumulates in the liver, suggesting a Other data suggest that ribose may have alternative and dis- striking tissue specificity for ribose metabolism.
    [Show full text]