Frustrated Magnetic Planes with Intricate Interaction Pathways in the Mineral Langite Cu $ 4 $(OH) $ 6 $ SO $ 4\Cdot 2$ H $ 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Chemistry of Formation of Lanarkite, Pb2oso 4
SHORT COMMUNICATIONS MINERALOGICAL MAGAZINE, DECEMBER 1982, VOL. 46, PP. 499-501 Chemistry of formation of lanarkite, Pb2OSO 4 W E have recently reported (Humphreys et al., 1980; sion which is at odds with the widespread occur- Abdul-Samad et al., 1982) the free energies of rence of the simple sulphate and the extreme rarity formation of a variety of chloride-bearing minerals of the basic salt, and with aqueous synthetic of Pb(II) and Cu(II) together with carbonate procedures for the preparation of the compound and sulphate species of the same metals includ- (Bode and Voss, 1959), which involve reaction of ing leadhillite, Pb,SO4(COa)2(OH)2, caledonite, angtesite in basic solution. PbsCu2CO3(SO4)3(OH)6, and linarite, (Pb,Cu)2 Kellog and Basu (1960) also determined AG~ for SO4(OH)2. By using suitable phase diagrams it has Pb2OSOa(s) at 298.16 K using the method of proved possible to reconstruct, in part, the chemical univariant equilibria in the system Pb-S-O. They history of the development of some complex obtained a value of -1016.4 kJ mol-1 based on secondary mineral assemblages such as those at literature values for PbO(s), PbS(s), PbSO4(s), and the Mammoth-St. Anthony mine, Tiger, Arizona, SO2(g) and another of - 1019.8 kJ mol- 1 based on and the halide and carbonate suite of the Mendip adjusted values for the above compounds. These Hills, Somerset. two results, for which the error was estimated to A celebrated locality for the three sulphate- be about 4.5 kJ mol-1, seem to be considerably bearing minerals above is the Leadhills-Wanlock- more compatible with observed associations than head district of Scotland (Wilson, 1921; Heddle, the earlier values. -
Hydrowoodwardite Cu2al2(SO4)(OH)8 • Nh2o. C 2001-2005 Mineral Data Publishing, Version 1
Hydrowoodwardite Cu2Al2(SO4)(OH)8 • nH2O. c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32/m (probable). As porous botryoidal crusts and small stalactitic aggregates. Physical Properties: Fracture: Uneven. Tenacity: Brittle upon partial dehydation. Hardness = n.d. D(meas.) = 2.33(8) D(calc.) = 2.48 Slowly and reversibly dehydrates to woodwardite. Optical Properties: Translucent. Color: Blue to pale blue. Streak: Pale blue. Luster: Vitreous. Optical Class: [Uniaxial.] n = 1.549(5)–1.565(5) ω = n.d. = n.d. Cell Data: Space Group: R3m (probable). a = 3.070(7) c = 31.9(2) Z = 3 X-ray Powder Pattern: St. Briccius mine, Germany. 10.5 (100), 5.26 (17), 3.50 (6), 2.60 (5b), 1.524 (4b), 2.46 (2b), 2.23 (2b) Chemistry: (1) SO3 15.50 SiO2 5.60 Al2O3 19.20 CuO 28.39 ZnO 0.41 Na2O 0.10 H2O 30.10 Total [99.30] (1) St. Briccius mine, Germany; by ICP-MS, SiO2 from admixed amorphous silica, H2Oby 2− 1− TGA, (SO4) , (OH) and H2O confirmed by IR, original total given as 99.3%; corresponds to • (Cu1.92Zn0.04)Σ=1.96Al2.04(SO4)1.04(OH)7.96 5.08H2O. (2) St. Christoph mine, Germany; analysis 2− not given, (CO3) from stoichiometry and presence confirmed by IR; then stated to correspond • to (Cu1.96Zn0.04)Σ=2.00(UO2)0.04Al2.00[(SO4)0.64(CO3)0.36]Σ=1.00(OH)8 nH2O. Occurrence: Rare in the oxidized portions of base metal sulfide mines. Association: Woodwardite, schulenbergite, namuwite, brianyoungite, langite, linarite, allophane, amorphous silica. -
Ramsbeckite (Cu, Zn)15(SO4)4(OH)22 • 6H2O C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic, Pseudohexagonal
Ramsbeckite (Cu, Zn)15(SO4)4(OH)22 • 6H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudohexagonal. Point Group: 2/m. Crystals are tabular with large {001}, also {210}, {110}, {100}, giving a slightly rounded rhombic outline, to 3 mm. Twinning: Observed, repeated, forming cylindrical aggregates. Physical Properties: Cleavage: On {001}, perfect. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 3.5 D(meas.) = 3.39–3.41 D(calc.) = 3.37 Optical Properties: Transparent to translucent. Color: Green, blue-green. Streak: Pale green. Luster: Vitreous. Optical Class: Biaxial (–). Pleochroism: Weak; X = pale blue-green, emerald-green; Y = Z = blue-green, yellow-green. Orientation: Y = b; X ∧ c =5◦; Z ∧ a =5◦. Absorption: X > Y = Z. α = 1.624–1.669 β = 1.674–1.703 γ = 1.678–1.707 2V(meas.) = 36◦–38◦ 2V(calc.) = 38.0◦ Cell Data: Space Group: P 21/a. a = 16.088–16.110 b = 15.576–15.602 c = 7.102–7.112 β =90.0◦−90.27◦ Z=2 X-ray Powder Pattern: Bastenberg mine, Ramsbeck, Germany. 7.090 (100), 3.549 (25), 1.776 (20), 3.254 (13), 4.400 (12), 3.232 (12), 3.244 (11) Chemistry: (1) (2) (3) SO3 17.4 17.6 17.51 CuO 44.5 43.8 43.49 ZnO 15.8 18.1 22.25 H2O 19.3 [20.5] 16.75 Total 97.0 [100.0] 100.00 (1) Bastenberg mine, Ramsbeck, Germany; SO4 by photometry, CuO, ZnO by AA, H2O by gas 1− chromatography, (OH) computed for charge balance; corresponds to (Cu10.30Zn3.58)Σ=13.88 • (SO4)4.00(OH)19.76 9.84H2O. -
Alteration - Porphyries
ALTERATION - PORPHYRIES Occurs with minor mineralization in the deeper Potassic parts of some porphyry systems, and is a host to mineralization in porphyry deposits associated with alkaline intrusions © Copyright Spectral International Inc. Sodic, sodic-calcic Propylitic Potassic alteration shows Actinolite, biotite, phlogopite, epidote, iron- chlorite, Mg-chlorite, muscovite, quartz, anhydrite, magnetite. Albite, actinolite, diopside, quartz, Fe-chlorite, Mg-chlorite, epidote, actinolite, magnetite, titanite, chlorite, epidote, calcite, illite, montmorillonite, albite, pyrite. scapolite Intermediate argillic alteration generally This is an intense alteration phase, often in the Copyright Spectral International Inc.© forms a structurally controlled to upper part of porphyry systems. It can also form envelopes around pyrite-rich veins that Phyllic alteration commonly forms a widespread overprint on other types of cross cut other alteration types. peripheral halo around the core of alteration in many porphyry systems porphyry deposits. It may overprint earlier potassic alteration and may host substantial mineralization ADVANCED ARGILLIC Phyllic INTERMEDIATE ARGILLIC The minerals associated with this type The detectable minerals include are higher temperature and include illite, muscovite, dickite, kaolinite, pyrophyllite, quartz, andalusite, Fe-chlorite, Mg-chlorite, epidote, diaspore, corundum, alunite, topaz, montmorillonite, calcite, and pyrite tourmaline, dumortierite, pyrite, and hematite EXOTIC COPPER www.e-sga.org/ CU PHOSPHATES Cu Cu CARBONATES CHLORIDES Azurite, malachite, aurichalcite, rosasite Atacamite, connellite, and cumengite © Copyright Spectral International Inc. Cu-ARSENATES EXOTIC COPPER Cu-SILICATES Cu-SULFATES bayldonite, antlerite, chenevixite chrysocolla dioptase brochantite, conichalcite chalcanthite clinoclase papagoite shattuckite cyanotrichite olivenite kroehnite, spangolite © Copyright Spectral International Inc. © Copyright Spectral International Inc. LEACH CAP MINERALS . -
Wroewolfeite Cu4(SO4)(OH)6 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic
Wroewolfeite Cu4(SO4)(OH)6 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: m. Lathlike crystals, to 1 mm. Twinning: By reflection on {001} and {100}, yielding fourlings. Physical Properties: Cleavage: Perfect on {010}, {100}, {001}. Hardness = ∼2.5 D(meas.) = 3.27(1) D(calc.) = 3.30 Optical Properties: Translucent. Color: Dark greenish blue; blue in transmitted light. Streak: Pale blue. Luster: Vitreous. Optical Class: Biaxial (–). Pleochroism: Strong; X = pale blue; Y = deep greenish blue; Z = greenish blue. Absorption: Y Z > X. α = 1.637(2) β = 1.682(2) γ = 1.694(2) 2V(meas.) = 53◦ Cell Data: Space Group: Pm. a = 6.045(1) b = 5.646(1) c = 14.337(6) β =93.39(1)◦ Z=2 X-ray Powder Pattern: Loudville mine, Massachusetts, USA. 7.152 (100), 3.581 (70), 2.628 (35), 2.004 (30), 2.431 (20), 2.379 (20), 2.278 (20) Chemistry: (1) (2) SO3 16.48 16.40 CuO 64.22 65.16 H2O [19.30] 18.44 Total [100.00] 100.00 (1) Loudville mine, Massachusetts, USA; by electron microprobe, H2O by difference; 1− with (OH) calculated for charge balance and H2O adjusted for best agreement between • measured and calculated densities, then corresponds to Cu3.94(SO4)1.00(OH)5.88 2.11H2O. • (2) Cu4(SO4)(OH)6 2H2O. Polymorphism & Series: Dimorphous with langite. Occurrence: An uncommon secondary mineral in the oxidation zone of copper-bearing hydrothermal mineral deposits; may be post-mine or formed in dumps and in slags. Association: Langite, posnjakite, serpierite, brochantite, linarite, malachite, chalcocite, covellite. -
Journal of the Russell Society, Vol 4 No 2
JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm. -
Antlerite Cu3(SO4)(OH)4 C 2001-2005 Mineral Data Publishing, Version 1
Antlerite Cu3(SO4)(OH)4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are thick tabular {010}, equant or short prismatic [001], with dominant {110}, another twenty-odd forms, to 2 cm; commonly fibrous and in cross-fiber veinlets, feltlike, granular or powdery lumps and aggregates. Physical Properties: Cleavage: {010}, perfect; {100}, poor. Tenacity: Brittle. Hardness = 3.5 D(meas.) = 3.88 D(calc.) = 3.93 Optical Properties: Translucent. Color: Emerald-green, blackish green, pale green. Streak: Pale green. Luster: Vitreous. Optical Class: Biaxial (+). Pleochroism: X = yellow-green; Y = blue-green; Z = green. Orientation: X = b; Y = a; Z = c. Dispersion: r< v,very strong. α = 1.726 β = 1.738 γ = 1.789 2V(meas.) = 53◦ Cell Data: Space Group: P nam. a = 8.244(2) b = 11.987(3) c = 6.043(1) Z = 4 X-ray Powder Pattern: Synthetic. (ICDD 7-407). 4.86 (100), 2.566 (85), 3.60 (75), 2.683 (75), 6.01 (25), 5.40 (25), 2.503 (25) Chemistry: (1) (2) SO3 22.32 22.57 CuO 66.34 67.27 H2O 10.52 10.16 insol. 0.88 Total 100.06 100.00 (1) Chuquicamata, Chile; average of two analyses. (2) Cu3(SO4)(OH)4. Occurrence: Uncommon, typically formed in the oxidized zone of copper deposits under highly acid conditions, especially in arid regions. Association: Brochantite, atacamite, chalcanthite, kr¨ohnkite,natrochalcite, linarite, gypsum. Distribution: In the USA, in Arizona, from the Antler mine, near Yucca Station, Mohave Co., large crystals at several mines in Bisbee, Cochise Co., from the Grandview mine, Grand Canyon, Coconino Co., in Copper Basin, between Skull Valley and Prescott, and at Jerome, Yavapai Co.; from the Blanchard mine, near Bingham, Hansonburg district, Socorro Co., New Mexico; in the Darwin district, Inyo Co., California; from the Northern Light mine, near Black Mountain, Mountain View district, Mineral Co. -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
Posnjakite: ~[Cu4(OH)6(H20)O] Octahedral Sheets in Its Structure
Zeitschrift fUr Kristallographie 149, 249~257 (1979) ([I by Akademische Verlagsgesellschaft 1979 Posnjakite: ~[Cu4(OH)6(H20)O] octahedral sheets in its structure M. Mellini and S. Merlino Istituto di Mineralogia e Petrografia and C.N.R., Centro di Studio per la Geologia StrutturaIe e Dinamica dell' Appennino, Pisa, Italy Received: November 27, 1978 Abstract. The crystal structure of posnjakite '(space group Pa, a = 10.578, b = 6.345, c = 7.863 A, {3= 117.98°) was determined by direct methods and refined to a final R value of 0.05. The structure is characterized by corrugated sheets of distorted copper octahedra with crystal chemical formula ~[CuiOHMH20)O). Sulphate groups are connected to one side of the octahedral sheet by corner sharing. The resultant composite octahedral- tetrahedral layers are connected to each other by hydrogen bonds. The crystal chemical formula ofposnjakite is CU4(S04)(OH)6' H20 with two such units in the unit cell. The relations ofposnjakite with other copper sulphate hydrates are noted and discussed. Introduction Posnjakite was first found in an ore quartz vein of the Nura-Taldinsk tungsten deposit in central Kazachstan by Komkov and Nefedov (1967) who, on the basis of microchemical tests and the supposed paramorphism of the mineral after langite, proposed the chemical formula CU4(S04)(OH)6 . H20; they determined the following unit cell parameters: a = 9.80(5),b = 6.32(5), c = 7.85(5) A, {3= 107(1)° (space group not stated). Posnjakite in association with langite was also found at Borovec (Czechoslovakia) and studied by Miskovsky (1975), who also synthesized it, and by Sekanina (1975) who, on the basis of careful goniometric measures, asserted "that (1) posnjakite crystals are limited by their own faces and they are not paramorphs after langite, (2) that they are tabular on (lOl) and (3) that (231) ist the twin plane". -
And Associated Lead Fluoride Minerals from the Grand Reef Mine, Graham County, Arizona
CALCIOARAVAIPAITE A NEW MINERAL 1'.01411II1 ••••• AND ASSOCIATED LEAD FLUORIDE MINERALS FROM THE GRAND REEF MINE, GRAHAM COUNTY, ARIZONA Anthony R. Kampf Mineralogy Section Natural History Museum of Los Angeles County 900 Exposition Blvd. Los Angeles, California 90007 Eugene E. Foord United States Geological Survey Box 25046, Denver Federal Center, MS 905 Lakewood, Colorado 80225 The Grand Ree] mine in southeastern Arizona, best known to collectors for superb crystals of linarite, is also the type locality for a unique suite of lead fluoride minerals. Crandreeiite, pseudograndretiflte, laurelite, aravaipaite, and artroeite have been found nowhere else; added to this group is calcioaravaipaite, described here for the first time. INTRODUCTION The Grand Reef mine is situated in Laurel Canyon, about 6 km In 1969 a bench was blasted near the top of the reef just south of northeast of Klondyke, in the Aravaipa mining district of Graham a vertical stope known as the "glory hole." Most of the mine's well- County, Arizona. Jones (1980) provided an overview of the history, crystallized oxidized minerals, predominantly sulfates, have been geology and mineralogy of the deposit. The mineralogy was recovered from this area. The fine linarite crystals up to 5 em in treated in greater detail in a thesis by Besse (1981). The mine length for which the mine. is most famous were found here. This is exploits a small epithermallead-copper-silver deposit hosted by a also the source of six new lead fluoride minerals (Table I). The first silicified breccia. The breccia is highly resistant to weathering and four, grandreefite, pseudograndreefite, laurelite and aravaipaite, forms a precipitous cliff known as the "reef," from which the name were discovered on a single specimen (LACMNH 25414) recov- of the mine is derived.