Lunar and Planetary Science XLVIII (2017) 1136.pdf CUBESATS TO SUPPORT FUTURE IO EXPLORATION. D. A. Williams1, R. M. C. Lopes2, J. Castillo- Rogez2, and P. Scowen1, 1School of Earth & Space Exploration, Arizona State University, Box 871404, Tempe, AZ 85287 (
[email protected]), 2NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109. Introduction: CubeSats are small satellites built Concept B) A CubeSat released on a descent tra- around standardized subunits measuring 10x10x10 cm jectory directed toward a volcano with an active plume and weighing 1.33 kg (‘1U’), with common configura- - either a persistent plume (e.g., Prometheus) or a larg- tions including 1U, 2U, 3U, and 6U (with 12U and er, more variable plume (e.g., Pele), in which the 24U under development). NASA recently had a pro- spacecraft would contain a mass spectrometer and a posal opportunity called Planetary Science Deep Space dust detector to measure plume gas compositions and Small Satellites Study (PSDS3), requesting concepts to dust particle sizes and compositions. This would be apply CubeSats to support planetary exploration, as similar to the Cassini fly-through of the plumes on ride-along payloads for future planetary missions. In Enceladus. In situ measurement of Io’s volcanic gas this abstract we discuss our proposed mission con- compositions using a mass spectrometer has not been cepts, an investigation of how CubeSats may be uti- attempted before, and a CubeSat can risk a flyby at lized to support future exploration of Jupiter’s volcanic much lower altitude where the gas and dust densities moon, Io.