Combination of Ultra-High Pressure and Xanthene-Derivatives to Inactivate Food-Borne Spoilage and Pathogenic Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Combination of Ultra-High Pressure and Xanthene-Derivatives to Inactivate Food-Borne Spoilage and Pathogenic Bacteria COMBINATION OF ULTRA-HIGH PRESSURE AND XANTHENE-DERIVATIVES TO INACTIVATE FOOD-BORNE SPOILAGE AND PATHOGENIC BACTERIA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Joy Gail Waite, M.S. * * * * * The Ohio State University 2007 Dissertation Committee: Approved by Professor Ahmed E. Yousef, Adviser Professor Steven J. Schwartz _________________________________ Professor MacDonald Wick Adviser Food Science and Nutrition Graduate Program Professor Jeff Culbertson ABSTRACT Food processing methods can lead to the development of processing-resistant spoilage and pathogenic microorganisms that can cause further cost to processors and increased health risks to consumers. Thus, inactivation of these potentially problematic bacterial strains by combinations of physical and/or chemical treatments needs to be investigated. Previous studies have shown combination treatments of ultra-high pressure (UHP) with antimicrobial peptides, oxidants, and antioxidants to be efficacious at inactivating bacteria. The current study investigates the use of UHP in combination with hydroxyxanthenes, including FD&C Red No. 3, to inactivate pressure-resistant strains of Lactobacillus plantarum, Listeria monocytogenes, and Escherichia coli O157:H7. Combination treatments of UHP (400 MPa, 3 minutes) and FD&C Red No. 3 (3 to 10 ppm) resulted in significant enhancement of inactivation of several pressure-resistant Gram-positive and Gram-negative strains. FD&C Red No. 3 is a known photosensitizer and was capable of inactivating Gram-positive species with short exposure to ambient light (15-30 minutes); however this compound had no effect on Gram-negative species without UHP treatment. UHP was found to cause an irreversible change in the barrier properties of the outer membrane with pressure treatments above 250 MPa leading to accumulation of FD&C Red No. 3 correlating with cell inactivation. Inactivation of Gram-positive and Gram-negative species by combination treatment was light-dependent ii with low UHP treatments (<400 MPa), indicating a role of photooxidation. However, with increasing pressures (>400 MPa) a light-independent mechanism was identified for all species tested. Efficacy of light-dependent and light-independent inactivation was determined in the food systems: carrot juice and turkey meat product. Combination treatment was effective against L. monocytogenes and E. coli O157:H7 in carrot juice with FD&C Red No. 3 at concentrations of 10 to 100 ppm. These strains were resistant to inactivation by combination treatment in turkey meat product, indicating that specific food components or composition may decrease the efficacy of these treatments. Further studies were completed to determine the impact of superoxide production on the inactivation of E. coli K12 wild-type and sod mutants. Mutant strains were not significantly different in sensitivity to any of the treatments tested, however, all E. coli K12 strains were significantly more sensitive to UHP and UHP-FD&C Red No. 3 combination treatments when treated and recovered under aerobic conditions compared to anaerobic conditions. Pressure-resistant strains were treated with UHP alone and in combination with FD&C Red No. 3 under aerobic and anaerobic conditions to determine the impact of type I and type II photooxidation on inactivation. The majority of inactivation by combination treatment with light exposure is due to type I photooxidation based on little difference between aerobic and anaerobic treatments. Interestingly, inactivation without light exposure was oxygen dependent for all microorganisms tested. Further study is needed to determine if oxygen dependent effect is due to oxygen presence during treatment or during recovery. Inactivation of UHP processing-resistant microorganism can be achieved using combination treatment of UHP and FD&C Red No. 3 in food systems. iii ACKNOWLEDGMENTS I would like to take this opportunity to thank the people that have made this research and my education at The Ohio State University possible. First and foremost, I would like to thank Dr. Ahmed Yousef for sharing his unbelievable wisdom and passion for research and his unwavering trust in my abilities. Your support has allowed me to grow into a better researcher and teacher; I only hope to possess a small fraction of your mentoring abilities and compassion for others. Secondly, I would like to thank the members of the Yousef lab for their friendship, encouragement, and wisdom: Yoon- Kyung Chung, Zengguo (France) He, Luis Rodriguez-Romo, Mohammed Khadre, Aaron Malone, Erin Horton, Mustafa Vurma, Shara Johnson, Xueying Zhang, Yuan Yan, Jennifer Perry, Amrish Chawla, and Joe Jones. I would like to specifically thank Joe Jones for being a wonderful person and friend and having an extraordinary ability to learn from someone as disorganized as myself. Thank you, Joe, for making dilution blanks and liters upon liters of media for me; but above all for all of the hard work and time spent on the salad dressing project, you are a life-saver, or more appropriately a project-saver. I would like to thank my committee members, Dr. Steven Schwartz, Dr. MacDonald Wick, and Dr. Jeff Culbertson for their patience through the latter stages of iv this process. Thank you Dr. Schwartz and Dr. Wick for teaching graduate courses that were thought-provoking and educational. Thank you to Dr. Culbertson for listening to my crazy rants about teaching problems. A special thanks to James Douglass, Richard Nist, Dan Aruscavage, and Michele Manuzon for all of the help with FST/MICRO 636.02, putting up with my rantings, and laughing together over “maximum penetration number” and “Asperilla”. Extra special thanks to Matt Mezydlo for making the term projects work; they would have failed without you. I would especially like to thank the extremely close friends I have made over the last few years: Mary Kay Folk, Jennifer Ahn-Jarvis, April Wax, Julie Jenkins, Nurdan Kocaoglu-Vurma and Robert King. You have made the time go by quickly and have helped distract me when necessary for me to retain my sanity. Special thanks to my mother Sharon, my father Joe, and my sisters Laurie and Mindy for believing in me and supporting my crazy ideas. Most importantly, I would like to thank my son Allan. You are the best kid in the world, thank you for being a wonderful, caring, and unique individual; I love you more than anything. v VITA June 20, 1980………………………………………. Born, Florence, Oregon, U.S.A. 2002……………………........................................... B.S. Food Science and Technology, Oregon State University. 2004………………………………………………... M.S. Microbiology, Oregon State University 2004-present……………………………………….. Graduate Research and Teaching Associate, The Ohio State University PUBLICATIONS Research Publication 1. Waite, J.G., M.A. Daeschel. 2007. Contribution of wine components to inactivation of food-borne pathogens. J. Food Sci. 72(7):M286-M291. FIELDS OF STUDY Major Field: Food Science and Nutrition vi TABLE OF CONTENTS Page Abstract................................................................................................................................ ii Acknowledgements..............................................................................................................iv Vita.......................................................................................................................................vi List of Tables .......................................................................................................................ix List of Figures......................................................................................................................xi Chapters: 1. Literature Review...........................................................................................................1 1.1. Color and food ........................................................................................................1 1.2. Xanthene dyes.......................................................................................................23 1.3. Photosensitizers and photooxidation ...................................................................36 1.4. Ultra-high pressure ...............................................................................................61 1.5. “Hurdle” Technologies .........................................................................................75 2. Xanthene-derived food colorants sensitize processing-resistant foodborne pathogenic and spoilage bacteria to ultra-high pressure.................................................................96 3. Destabilization of the outer membrane of Escherichia coli by physical and chemical methods leads to inactivation by FD&C Red No. 3 ..................................................119 4. Contribution of photooxidation to inactivation of Gram-positive and Gram-negative bacteria by ultra-high pressure and xanthene-derivatives..........................................145 5. Inactivation of bacteria by ultra-high pressure and xanthene-derivatives: a secondary light-independent mechanisms...................................................................................166 6. Efficacy of FD&C Red No. 3 and ultra-high pressure combination treatment against foodborne pathogens in food systems........................................................................168 7. Impact of aerobic and anaerobic treatment and recovery on inactivation
Recommended publications
  • The Synthesis of Fluorescent 3, 6-Dihydroxyxanthones
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2016 The yS nthesis of Fluorescent 3, 6-dihydroxyxanthones: A Route to Substituted Fluoresceins Surajudeen Omolabake University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Chemistry Commons Recommended Citation Omolabake, Surajudeen, "The yS nthesis of Fluorescent 3, 6-dihydroxyxanthones: A Route to Substituted Fluoresceins" (2016). Theses and Dissertations. 1299. https://dc.uwm.edu/etd/1299 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE SYNTHESIS OF FLUORESCENT 3, 6-DIHYDROXYXANTHONES: A ROUTE TO SUBSTITUTED FLUORESCEINS by Surajudeen Omolabake A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Chemistry at University of Wisconsin-Milwaukee August 2016 ABSTRACT THE SYNTHESIS OF FLUORESCENT 3, 6-DIHYDROXYXANTHONES: A ROUTE TO SUBSTITUTED FLUORESCEIN by Surajudeen Omolabake University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor Alan W Schwabacher Xanthones belong to the family of compounds of the dibenzo-γ-pyrone framework. Naturally occurring xanthones have been reported to show a wide range of biological and medicinal activities including antifungal,19 antimalarial,20 antimicrobial,21 antiparasitic,22 anticancer,23 and inhibition of HIV activity in cells.24 Xanthones have also been used as a turn on fluorescent probe for metal ions,32 including use as pH indicators, metal ion sensors, in molecular biology, medicinal chemistry and in the construction of other dyes.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Ijms-20-05263-V2
    Delft University of Technology Leloir Glycosyltransferases in Applied Biocatalysis A Multidisciplinary Approach Mestrom, Luuk; Przypis, Marta; Kowalczykiewicz, Daria; Pollender, André; Kumpf, Antje; Marsden, Stefan R.; Szymańska, Katarzyna; Hanefeld, Ulf; Hagedoorn, Peter Leon; More Authors DOI 10.3390/ijms20215263 Publication date 2019 Document Version Final published version Published in International Journal of Molecular Sciences Citation (APA) Mestrom, L., Przypis, M., Kowalczykiewicz, D., Pollender, A., Kumpf, A., Marsden, S. R., Szymańska, K., Hanefeld, U., Hagedoorn, P. L., & More Authors (2019). Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. International Journal of Molecular Sciences, 20(21), [5263]. https://doi.org/10.3390/ijms20215263 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B.
    [Show full text]
  • Leloir Glycosyltransferases in Applied Biocatalysis: a Multidisciplinary Approach
    International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B. Jarz˛ebski 7, Katarzyna Szyma ´nska 8, Arkadiusz Chru´sciel 9, Dirk Tischler 4,5 , Rob Schoevaart 10, Ulf Hanefeld 1 and Peter-Leon Hagedoorn 1,* 1 Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; [email protected] (L.M.); [email protected] (S.R.M.); [email protected] (U.H.) 2 Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; [email protected] (M.P.); [email protected] (D.K.) 3 Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland 4 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; [email protected] (A.P.); [email protected] (A.K.); [email protected] (D.T.) 5 Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany 6 EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany; [email protected] 7 Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland; [email protected] 8 Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice Poland.; [email protected] 9 MEXEO Wiesław Hreczuch, ul.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Characterization of Dextransucrase from Leuconostoc Mesenteroides T3, Water Kefir Grains Isolate
    Characterization of dextransucrase from Leuconostoc mesenteroides T3, water kefir grains isolate Miona G. Miljković1, Slađana Z. Davidović1, Slavko Kralj2, Slavica S. Šiler-Marinković1, Mirjana D. Rajilić-Stojanović1, Suzana I. Dimitrijević-Branković1 1University of Belgrade, Faculty of Technology and Metallurgy, Department for Biochemical Engineering and Biotechnology, Belgrade, Serbia 2Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana, Slovenia Abstract The production of dextransucrase (DS) by Leuconostoc mesenteroides T3, novel isolate SCIENTIFIC PAPER from water kefir grain, was studied and optimized. Bacterial supernatant reached activity of 3.1 U/ml when the culture was grown at 23 °C and under static culture condition using UDC 63(497.113):632.954:66.061:543 classical Tsuchiya medium for DS production. The increase of sucrose concentration to 7% led to an increase of DS activity by 52% compared to the control. Medium with 2% beef extract and 1% yeast extract resulted in 4.52 U/ml, which was 47% higher than in the Hem. Ind. 71 (4) 351–360 (2017) control (with 2% yeast extract). Finally, the increase of K2HPO4 concentration from 2 to 3% resulted in the increased enzyme activity by 28%. Enzyme purified by polyethylene glycol 400 fractionation displayed maximum activity at 30 °C and pH 5.4. Zymogram analysis confirmed the presence of DS of approximately 180 kDa. The addition of divalent cations Ca2+, Mg2+, Fe2+ and Co2+ led to a minor increase of DS activity, while the addition of Mn2+ was the most prominent with 73% increase. These findings classify dextransucrase from Leuconostoc mesenteroides T3 as promising candidate for production of dextran, which has numerous applications in various industries.
    [Show full text]
  • Counterstaining Hemalum
    Counterstaining Hemalum Bryan D. Llewellyn A presentation to the Queensland Histology Group at Caloundra, Queensland, Australia, May 2008. Bryan Llewellyn – Counterstaining Hemalum –Caloundra, Queensland – May, 2008 Yesterday I spoke about alum hematoxylin staining The former are carboxyl, hydroxyl and sulphonic but I did not comment on the counterstain usually groups predominantly, while the latter are nearly used, i.e. eosin. As an acid dye, eosin staining has always amino groups. In most cases it involves plain much in common with other acid dyes, such as those ionic bonds. used for single solution and multi-step trichrome methods and the various quad stains. The basic underlying principles are very similar, merely the The Eosins application being different. Eosin belongs to a group of dyes called fluorones, which are derived from fluorescien(Horobin and Kiernan Acid dyes as a group are quite diverse, ranging from 2002.). The sodium salt of fluorescien is called uranin. picric acid, which has a molecular weight of 229, to It is not used histologically, but its relationship to the large molecular weight dyes such as fast green eosin is quite apparent when the formulae are FCF at 809. In fact, this difference in molecular compared. These dyes are fluorescien homologues weights is one of the features of these dyes that halogenated with bromine, iodine or chlorine. Eosin enables us to manipulate them so successfully. Y ws itself is tetrabromofluorescien, for instance, i.e. fluorescien with four bromine atoms attached. So what is an acid dye? Simply put, it is an organic salt in which the anion is intensely coloured, and The free anion of eosin Y is called eosinol Y, and its which will attach to cations while retaining its colour.
    [Show full text]
  • Physico-Chemical Characterization and Antimicrobial Properties of Hybrid Film Based on Saponite and Phloxine B
    molecules Article Physico-Chemical Characterization and Antimicrobial Properties of Hybrid Film Based on Saponite and Phloxine B Nitin Chandra teja Dadi 1, Matúš Dohál 1,†, Veronika Medvecká 2, Juraj Bujdák 3,4, Kamila Koˇci 1 , Anna Zahoranová 2 and Helena Bujdáková 1,* 1 Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; [email protected] (N.C.t.D.); [email protected] (M.D.); [email protected] (K.K.) 2 Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; [email protected] (V.M.); [email protected] (A.Z.) 3 Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; [email protected] 4 Institute of Inorganic Chemistry of SAS, 845 36 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-2-9014-9436 † Current address: Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia. Abstract: This research was aimed at the preparation of a hybrid film based on a layered silicate saponite (Sap) with the immobilized photosensitizer phloxine B (PhB). Sap was selected because of its high cation exchange capacity, ability to exfoliate into nanolayers, and to modify different surfaces. The X-ray diffraction of the films confirmed the intercalation of both the surfactant and PhB molecules in the Sap film. The photosensitizer retained its photoactivity in the hybrid films, as shown Citation: Dadi, N.C.t.; Dohál, M.; by fluorescence spectra measurements.
    [Show full text]
  • 2,4,5,7-Tetrabromo-6- Hydroxy-3-Oxo-3H-Xanthen-9-Yl)- (Solvent Red 48
    Screening Assessment for the Challenge Benzoic acid, 2,3,4,5-tetrachloro-6-(2,4,5,7-tetrabromo-6- hydroxy-3-oxo-3H-xanthen-9-yl)- (Solvent Red 48) Chemical Abstracts Service Registry Number 2134-15-8 Environment Canada Health Canada September 2010 Screening Assessment CAS RN 2134-15-8 Synopsis Pursuant to section 74 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), the Ministers of the Environment and of Health have conducted a screening assessment on Benzoic acid, 2,3,4,5-tetrachloro-6-(2,4,5,7-tetrabromo-6-hydroxy-3-oxo- 3H-xanthen-9-yl)- (Solvent Red 48), Chemical Abstracts Service Registry Number 2134- 15-8. This substance was identified as a high priority for screening assessment and included in the Ministerial Challenge because it had been found to meet the ecological categorization criteria for persistence, bioaccumulation potential and inherent toxicity to non-human organisms and is believed to be in commerce in Canada. The substance Solvent Red 48 was not considered to be a high priority for assessment of potential risks to human health, based upon application of the simple exposure and hazard tools developed by Health Canada for categorization of substances on the Domestic Substances List. Therefore, this assessment focuses principally on information relevant to the evaluation of ecological risks. Solvent Red 48 is an organic substance that may be used as a dye in Canada in various applications including in personal-care products and in drugs. Based on the survey conducted under section 71 of CEPA 1999, no companies reported importing or manufacturing the substance above the reporting threshold of 100 kg/year, and no use of the substance was reported above the reporting threshold of 1000 kg/year in 2006.
    [Show full text]
  • Uni International 300 N
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation o f techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “ target” for pages apparently lacking from the document photographed is “Missing Page(s)” . I f it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. I f copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. I f necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • An Optimized Staining Technique for the Detection of Gram Positive and Gram Negative Bacteria Within Tissue Sandra C
    Becerra et al. BMC Res Notes (2016) 9:216 DOI 10.1186/s13104-016-1902-0 BMC Research Notes TECHNICAL NOTE Open Access An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue Sandra C. Becerra, Daniel C. Roy, Carlos J. Sanchez, Robert J. Christy and David M. Burmeister* Abstract Background: Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Cur- rently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. Findings: A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue.
    [Show full text]
  • Ep 1 117 822 B1
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.
    [Show full text]