Land-Use Type Drives Soil Population Structures of the Entomopathogenic Fungal Genus Metarhizium

Total Page:16

File Type:pdf, Size:1020Kb

Land-Use Type Drives Soil Population Structures of the Entomopathogenic Fungal Genus Metarhizium microorganisms Article Land-Use Type Drives Soil Population Structures of the Entomopathogenic Fungal Genus Metarhizium María Fernández-Bravo 1 , Florian Gschwend 1 , Johanna Mayerhofer 1 , Anna Hug 2, Franco Widmer 1 and Jürg Enkerli 1,* 1 Molecular Ecology, Agroscope, CH-8046 Zürich, Switzerland; [email protected] (M.F.-B.); fl[email protected] (F.G.); [email protected] (J.M.); [email protected] (F.W.) 2 Swiss Soil Monitoring Network (NABO), Agroscope, CH-8046 Zürich, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Species of the fungal genus Metarhizium are globally distributed pathogens of arthropods, and a number of biological control products based on these fungi have been commercialized to control a variety of pest arthropods. In this study, we investigate the abundance and population structure of Metarhizium spp. in three land-use types—arable land, grassland, and forest—to provide detailed information on habitat selection and the factors that drive the occurrence and abundance of Metarhizium spp. in soil. At 10 sites of each land-use type, which are all part of the Swiss national soil-monitoring network (NABO), Metarhizium spp. were present at 8, 10, and 4 sites, respectively. On average, Metarhizium spp. were most abundant in grassland, followed by forest and then arable land; 349 Metarhizium isolates were collected from the 30 sites, and sequence analyses of the Citation: Fernández-Bravo, M.; nuclear translation elongation factor 1α gene, as well as microsatellite-based genotyping, revealed Gschwend, F.; Mayerhofer, J.; Hug, A.; the presence of 13 Metarhizium brunneum, 6 Metarhizium robertsii, and 3 Metarhizium guizhouense Widmer, F.; Enkerli, J. Land-Use Type Drives Soil Population Structures of multilocus genotypes (MLGs). With 259 isolates, M. brunneum was the most abundant species, and the Entomopathogenic Fungal Genus significant differences were detected in population structures between forested and unforested sites. Metarhizium. Microorganisms 2021, 9, Among 15 environmental factors assessed, C:N ratio, basal respiration, total carbon, organic carbon, 1380. https://doi.org/10.3390/ and bulk density significantly explained the variation among the M. brunneum populations. The microorganisms9071380 information gained in this study will support the selection of best-adapted isolates as biological control agents and will provide additional criteria for the adaptation or development of new pest Academic Editor: Victor Glupov control strategies. Received: 28 May 2021 Keywords: M. brunneum; M. robertsii; M. guizhouense; microsatellite; SSR; EF-1alpha; abiotic factors; Accepted: 22 June 2021 arable land; grassland; forest; biological control Published: 25 June 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- iations. The genus Metarhizium Sorok¯ın (Hypocreales: Clavicipitaceae) includes more than 30 described species (including both asexual and sexual states) that are pathogenic to arthropods, particularly insects and some arachnids [1,2]. The wide host spectrum of Metarhizium spp. includes many important crop pests such as Helicoverpa armigera (Hübner, 1805), Diabrotica virgifera virgifera (LeConte, 1868), Agriotes spp. (Eschscholtz, 1829), and Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. also termites, cockroaches, and even disease-transmitting insects such as tse-tse flies [2–7]. This article is an open access article Based on the pathogenicity of this fungus, a number of biological control agents have been distributed under the terms and developed as commercial mycoinsecticides and mycoacaricides to control pest arthropods conditions of the Creative Commons worldwide (see [8] and https://www.eppo.int; https://www.epa.gov). Attribution (CC BY) license (https:// Soil is considered the main habitat and reservoir of Metarhizium spp., and they have creativecommons.org/licenses/by/ been isolated from very different ecosystems, from tropical to temperate, semiarid, and 4.0/). artic areas [5,9]. Besides being entomopathogenic, Metarhizium spp. exhibit a pronounced Microorganisms 2021, 9, 1380. https://doi.org/10.3390/microorganisms9071380 https://www.mdpi.com/journal/microorganisms Microorganisms 2021, 9, 1380 2 of 19 saprophytic lifestyle, and, for some isolates and/or species, symbiotic interactions with plants as rhizosphere colonizers and/or endophytes have been reported [9,10]. Studies have demonstrated, for instance, that isolates of M. robertsii J.F. Bisch., S.A. Rehner & Humber, M. brunneum Petch, and M. guizhouense Q.T. Chen & H.L. Guo can provide insect- derived nitrogen to plants [11,12], increase plant growth and productivity [13,14], as well as protect plants from environmental stresses, for example, in saline environments [15,16]. The versatile roles Metarhizium spp. may have emphasize the beneficial potential and value of its presence, particularly in agricultural habitats [17]. Arable land, grassland, and forests represent major anthropogenic land-use types (LUTs) and cover about 40% of the global land area [18]. A number of studies have re- ported possible effects of LUTs on the presence and abundance of Metarhizium spp. Factores responsible includ crop types, farming practices management intensity, tillage, and the application of pesticides or fertilizers [19–22]. For instance, it has been consistently reported that Metarhizium spp. occur at higher abundances in unforested, sun-exposed LUTs or open land areas such as arable- and grasslands compared to forests, where their abundances are lower or sometimes not even detected [17,19,23–26]. The abundance of Metarhizium spp. has been more prominent in unforested semi-natural habitats such as permanent grassland and field margins compared to arable land in Switzerland [27,28]. Furthermore, there is evidence from field studies in Norway indicating a higher abundance of entomopathogenic fungi such as M. anisopliae, Beauveria bassiana (Bals.-Criv.) Vuill., or Tolypocladium cylindrospo- rum W. Gams in soils of organically managed fields compared to conventionally managed fields [29]. Several studies have suggested that the application of organic fertilizers may be the main driving factor for the increased abundance of Metarhizium spp. [22,30]. While the overall abundance of Metarhizium spp. in different LUTs has been explored in various studies, information on the species composition of Metarhizium communities and within-species diversity in different LUTs is limited. In addition, many of these studies have been performed prior to the establishment of the current Metarhizium species concept, which has precluded a comparison of data from these different periods. Nevertheless, the results reported by Cabrera-Mora et al. [31] have indicated that cropping systems can affect species abundances, as M. brunneum was isolated predominantly from soil where beans were grown and M. robertsii from soils where maize was grown. Similarly, Wyre- bek et al. [32] reported that M. robertsii, M. brunneum, and M. guizhouense were closely associated with soils from grassland, shrubs, or trees, respectively. In a study performed in Ontario, Canada, two genetically distinct groups were found to be associated with agricultural unforested field habitats and forested soils, respectively [23,33,34]. Isolates of the two genetic groups were subsequently described as M. brunneum and M. robertsii [35]. Studies assessing within-species diversity have mostly focused on individual fields or agricultural systems only, e.g., an agricultural field in Denmark [36] and a strawberry field in Brazil [37]. A comparison of the within-species diversity of M. brunneum and M. robertii between agricultural and adjacent natural habitats has been performed in different ecologi- cal regions in northwestern North America [38]. While considerable genotype diversity has been reported for both species in both habitats, no significant differences have been detected between them. Information on the number of species, their population structures, and distributions in different LUTs remains limited. This information, however, is impor- tant to understand the interaction of ecological conditions and Metarhizium population structures. In turn, it may allow the improvement of existing habitats or the development of new habitats and/or LUT-adapted biological control approaches, including conservation biological control [17]. Conditions in a particular soil or at a particular site are affected, on the one hand, by anthropogenic activities and, on the other hand, by different environmental factors, i.e., abiotic (physical and chemical), biotic (derived from organisms), as well as climatic (humidity, temperature, and solar radiation) factors. All these factors may have direct effects on the occurrence, abundance, propagation, persistence, and even virulence of Metarhizium populations [24,39–42]. Soil physical, chemical, and biological factors, such Microorganisms 2021, 9, 1380 3 of 19 as soil texture, pH, and organic matter content, belong to the most intensively studied factors in this context. However, various reports have not been able to provide consistent information, and, in many cases, they have been contradictory. For example, organic matter, which represents an important source of organic carbon in soil, has been reported to negatively correlate with the abundance of Metarhizium
Recommended publications
  • Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes
    Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 DISCLAIMER The material in this document has been supplied by the authors. The views expressed remain the responsibility of the authors and do not necessarily reflect those of the government(s) or the designating Member State(s). In particular, the FAO, IAEA, nor any other organization or body sponsoring the development of this document can be held responsible for any material reproduced in the document. The proper citation for this document is: FAO/IAEA. 2019. Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes, A. Villaseñor, S. Flores, S. E. Campos, J. Toledo, P. Montoya, P. Liedo and W. Enkerlin (eds.), Food and Agriculture Organization of the United Nations/International Atomic Energy Agency. Vienna, Austria. 43 pp. Use of Entomopathogenic Fungi for Fruit Fly Control in Area- wide SIT Programmes Antonio Villaseñor IAEA/IPCS Consultant San Pedro La Laguna, Nayarit, México Salvador Flores Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Sergio E. Campos Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Jorge Toledo El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México Pablo Montoya Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Pablo Liedo El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México Walther Enkerlin Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 FOREWORD Effective fruit fly control requires an integrated pest management approach which may include the use of area-wide sterile insect technique (SIT).
    [Show full text]
  • Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
    biology Review Entomopathogenic Fungi and Bacteria in a Veterinary Perspective Valentina Virginia Ebani 1,2,* and Francesca Mancianti 1,2 1 Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; [email protected] 2 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected]; Tel.: +39-050-221-6968 Simple Summary: Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets.
    [Show full text]
  • The Bee Line May 2018 Newsletter of the Oregon State Beekeepers Association
    Volume 43 Number 4 The Bee Line May 2018 Newsletter of the Oregon State Beekeepers Association USING FUNGI TO IMPROVE HONEY BEE HEALTH Nicholas Naeger and Jennifer Han, Washington State University The Washington State University bee research team has been developing new tools to help bees and beekeepers tackle the current disease issues. In addition to breeding honey bees well suited to the Pacific Northwest and continuing our honey bee disease and diagnostics work, the WSU team has been investigating novel uses of fungi for the improvement of bee health. IN THIS ISSUE . Fungi are perhaps the most hidden and overlooked group in the vast web of life that Fungi for Good Health 1 stretches across this planet. More closely related to animals than they are to plants President’s Message 2 or bacteria, fungi have been called the unseen orchestrators of ecosystems. Many fungi Saying Goodbye 3 spend the vast majority of their lives hidden from view underground or inside plant Bee Events 5 material, and many other fungi like yeasts never grow large enough to be seen with the naked eye. They are vital decomposers allowing for faster recycling of nutrients Regional News 5 back into the food web, and most land plants develop associations with symbiotic Keeping Bees in May 11 fungi in their roots. Microscopic fungi are used in commercial industry to make Classified Ad 14 products as diverse as soft drinks, antibiotics, and blue jeans, and perhaps they will Board & Affiliated Assns 15 play a role in helping bees combat honey bee viruses and Varroa mites.
    [Show full text]
  • Hymenoptera: Chalcidoidea) of Morocco
    Graellsia, 77(1): e139 enero-junio 2021 ISSN-L: 0367-5041 https://doi.org/10.3989/graellsia.2021.v77.301 ANNOTATED CHECK-LIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) OF MOROCCO. PART II Khadija Kissayi1,*, Mircea-Dan Mitroiu2 & Latifa Rohi3 1 National School of Forestry, Department of Forest Development, B.P. 511, Avenue Moulay Youssef, Tabriquet, 11 000, Salé, Morocco. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-3494-2250 2 Alexandru Ioan Cuza, University of Iaşi, Faculty of Biology, Research Group on Invertebrate Diversity and Phylogenetics, Bd. Carol I 20A, 700 505, Iaşi, Romania. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-1368-7721 3 University Hassan II, Faculty of Sciences Ben M’sik, Laboratory of ecology and environment, Avenue Driss El Harti, B.P. 7955, Casablanca, 20 800 Morocco. Email: [email protected] / or [email protected] – ORCID iD: https://orcid.org/0000-0002-4180-1117 * Corresponding author: [email protected] ABSTRACT In this second part, we present the subfamily Pteromalinae in Morocco, which includes 86 species belonging to 50 genera. Fifteen genera and 37 species are listed for the first time in the Moroccan fauna, among which 9 have been newly identified, 24 have been found in the bibliography and 4 deposited in natural history museums. An updated list of Moroccan species is given, including their distribution by regions, their general distribution and their hosts. Keywords: Pteromalinae; distribution; hosts; new record; Morocco; Palaearctic Region. RESUMEN Lista comentada de Pteromalidae (Hymenoptera: Chalcidoidea) de Marruecos. Parte II En esta segunda parte, presentamos la subfamilia Pteromalinae en Marruecos, que incluye 86 especies pertenecientes a 50 géneros.
    [Show full text]
  • Literature Review of Parasitoids of Filth Flies in Thailand: a List of Species with Brief Notes on Bionomics of Common Species
    SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH LITERATURE REVIEW OF PARASITOIDS OF FILTH FLIES IN THAILAND: A LIST OF SPECIES WITH BRIEF NOTES ON BIONOMICS OF COMMON SPECIES Chamnarn Apiwathnasorn Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Abstract. We reviewed the literature for surveys of parasitoid of filth flies in Thai- land. We found 5 families, with 9 genera and 14 species identified in Thailand. We describe the ecological niches and biology of common species, including Spalangia cameroni, S. endius, S. nigroaenea and Pachycrepoideus vindemmiae. Keywords: pupal parasitoids, synanthropic flies, garbage dump, Thailand INTRODUCTION are among the most important and com- mon natural enemies of filth flies associ- Human activities produce large quan- ated with animals and humans (Rutz tities of organic waste suitable as breeding and Patterson, 1990). Parasitoids are of sites for calyptrate fly species. Synan- interest due to the emergence of pesticide thropic flies and their association with resistance among fly populations and a unsanitary conditions are important for growing demand by the public for more public health reasons since they may be environmentally safe methods of control carriers of enteric pathogens (Greenberg, (Meyer et al, 1987; Scott et al, 1989; Cilek 1971; Olsen, 1998; Graczyk et al, 2001; Ber- and Greene, 1994; Legner, 1995). Bio- nard, 2003, Banjo et al, 2005). During their logical control includes release of natural lifecycle, flies are exposed to a wide range enemies into the ecosystem to reduce fly of natural enemies (Legner and Brydon, populations to below annoyance levels. 1966; Morgan et al, 1981; Axtell, 1986).
    [Show full text]
  • Metarhizium Brunneum
    Evaluating the efficacy of the entomopathogenic fungi Metarhizium brunneum against Varroa destructor, a common honey bee pest Jennifer Han1, Nick Naeger2, Brandon Hopkins2, Paul Stamets3, Steve Sheppard2, Lori Carris1 1Department of Plant Pathology, Washington State University, 2Department of Entomology, Washington State University, 3Fungi Perfecti Introduction Results Normalized Mite Fall The European honey bee (Apis mellifera) is the most important agricultural crop pollinator in Control Pre-Conidial Sporulating 0.16 the United States, contributing over $15 billion to the agricultural economy. Honey bees are * 0.14 facing a variety of dangers, however, the most common reported cause for colony loss is Varroa * destructor, an ectoparasitic mite. Although synthetic chemical acaricides are available for 0.12 varroa control, there are documented cases of mites resistant to these chemicals. 0.1 0.08 Metarhizium brunneum is a common soil-borne entomopathogenic fungi. It is commercially 0.06 available, EPA registered, and determined safe for human contact. Although previous studies 0.04 have shown M. brunneum can infect and kill varroa without harming the honey bee, virulence 0.02 varies between strains and application methods. Additionally, conidia, the infectious agent, 0 Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 quickly loses viability at high temperatures; bees maintain an internal hive temperature around P-value Control vs. 35℃ which is much higher than the optimum growth temperature for M. brunneum. 0.27 0.15 *0.03 *0.01 0.14 0.37 Sticky board with mites and MEA agar Sporulating Control vs. debris 0.93 0.32 0.51 0.22 0.59 0.67 Objective Pre-Conidial 1.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • E:\Jega\Index\2003\MAY03~1
    REVIEW ZOOS' PRINT JOURNAL 18(5): 1099-1110 A CHECKLIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) FROM THE INDIAN SUBCONTINENT P.M. Sureshan 1* and T.C. Narendran 2 1 Zoological Survey of India, Western Ghats Field Research Station, Kozhikode, Kerala 673002, India. 2 Systematic Entomology Laboratory, Department of Zoology, University of Calicut, Tengipalam, Kerala, 673635, India. Email: 1 [email protected]; 2 [email protected] Abstract and Subba Rao (1985, 1986) keyed out and catalogued the A checklist of the genera and species of Pteromalidae pteromalid genera and species known from the region. In recent (Hymenoptera: Chalcidoidea) so far reported from the years, several new genera and species of Pteromalidae have Indian subcontinent is provided. Of the 96 genera, 84 been described from the forested tracts of southern Western with 185 identified species and 12 genera with Ghats, a biodiversity hotspot centre in India (Sureshan, 1999a,b; unidentified species are listed. 2000a,b; 2001a,b,c; Sureshan & Narendran, 1995a,b; 1998; Narendran & Mini, 1999, etc.) and from other regions in India. Keywords Accordingly an updated checklist of the pteromalid fauna of the Indian subcontinent is presented here. It includes Chalcidoidea, checklist, distribution, habitat, host altogether 96 genera, 84 of them with 185 identified species and data, hymenoptera, Indian Subcontinent, locality, 12 genera with unidentified species. In the present work, the pteromalidae, synonymy, classification of the family given by Boucek (1988) is followed. Introduction Arrangement of the checklist The Pteromalidae is one of the largest and difficult families of In the checklist, pteromalid genera known so far from the Indian Chalcidoidea (Hymenoptera) to define taxonomically and subcontinent are grouped under separate subfamilies.
    [Show full text]
  • Filth Fly Parasitoids on Dairy Farms in Ontario and Quebec, Canada 417: 407 – 417 (2004)
    Color profile: Disabled Composite Default screen Filth fly parasitoids on dairy farms in Ontario and Quebec, Canada 417: 407 – 417 (2004) GAP Gibson1 Agriculture and Agri-Food Canada, Biodiversity and Integrated Pest Management, KW Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6 KD Floate Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403–1Avenue South, Lethbridge, Alberta, Canada T1J 4B1 The Canadian Entomologist 136: 407 – 417 (2004) Abstract—Hymenopterous parasitoids of filth flies (Diptera: Muscidae) were sur- veyed during 2 years on dairy farms in Ontario and Quebec near Ottawa, Ontario, using freeze-killed sentinel house fly (Musca domestica L.) pupae and naturally oc- curring fly pupae collected on site. Musca domestica and Stomoxys calcitrans (L.) (stable fly) represented 98.3% of the natural fly hosts from which parasitoids emerged. Muscidifurax raptor Girault et Saunders, Nasonia vitripennis Walker, Pachycrepoideus vindemiae (Rondani), Spalangia cameroni Perkins, S. nigra Latreille, Trichomalopsis viridescens (Walsh), and Urolepis rufipes (Ashmead) (Pteromalidae) were recovered from both sentinel and natural fly pupae. Another eight species, S. drosophilae Ashmead, S. endius Walker, S. haematobiae Ashmead, S. nigroaenea Curtis, S. subpunctata Förster, Trichomalopsis dubia (Ashmead) (Pteromalidae), Aphaereta pallipes (Say) (Braconidae), and Phygadeuon ?fumator Gravenhörst (Ichneumonidae), were recovered only from natural pupae. Over the 2 years, M. raptor comprised 90.7% of emerged parasitoids from sentinel pupae but only 17.0% of emerged parasitoids from natural pupae. From natural pupae, S. cameroni, S. nigra, and S. nigroaenea collectively comprised 60.3% of emerged parasitoids; P. ?fumator comprised 13.5% and the remaining nine species 9.2%. The recoveries of S.
    [Show full text]
  • Western Flower Thrips Control in Strawberry
    FACTSHEET 14/15 Soft Fruit Projects SF 80, SF 90 and Defra Horticulture LINK Project HL01107 Scott Raffle, AHDB Horticulture, Jude Bennison, ADAS, Jean Fitzgerald, East Malling Research and Clare Sampson, Keele University. Western flower thrips control in strawberry Western flower thrips (WFT) cause significant financial losses for strawberry growers in the United Kingdom. This factsheet provides information on the pest, the damage it causes to strawberries and the results of AHDB funded research in Projects SF 80, SF 90, SF 120 and a study of control in commercial strawberry production sites, which have led to a series of control guidelines. 1. WFT feeding in strawberry flower 2. Damage to strawberry caused by WFT feeding Action points Most successful control of WFT in commercial • Phytoseiulus persimilis is used as the main control method strawberry production has been found where: for two spotted spider mite. • Strawberry crops are only grown for one season. • Crop protection programmes that are harmful to predators are avoided. • Well-managed regular predator release strategies are used in all crops from either before flowering or from the • Advice on biological control programmes is sought from an first flowers, using Neoseiulus cucumeris, combined with adviser who is experienced in using predators. one or more of: Stratiolaelaps scimitus, Orius species • Product compatibility tables are consulted to check if (later in the season when temperatures are high enough proposed crop protection products are likely to be harmful for establishment)
    [Show full text]
  • The Fungal Pathogen Metarhizium Brunneum (Ascomycota: Hypocreales), and Maize-Infesting Aphids in Greenhouse Mesocosms
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Interactions among the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the fungal pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and maize-infesting aphids in greenhouse mesocosms Campos de Azevedo, Ana Gorete; Steinwender, Bernhardt Michael; Eilenberg, Jørgen; Sigsgaard, Lene Published in: Insects DOI: 10.3390/insects8020044 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Campos de Azevedo, A. G., Steinwender, B. M., Eilenberg, J., & Sigsgaard, L. (2017). Interactions among the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the fungal pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and maize-infesting aphids in greenhouse mesocosms. Insects, 8(2), [44]. https://doi.org/10.3390/insects8020044 Download date: 08. apr.. 2020 insects Article Interactions among the Predatory Midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the Fungal Pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and Maize-Infesting Aphids in Greenhouse Mesocosms Ana Gorete Campos de Azevedo, Bernhardt Michael Steinwender, Jørgen Eilenberg and Lene Sigsgaard * Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark; [email protected] (A.G.C.d.A.); [email protected] (B.M.S.); [email protected] (J.E.) * Correspondence: [email protected]; Tel.: +45-35-33-26-74 Academic Editors: Andrew G. S. Cuthbertson and Eric W. Riddick Received: 16 November 2016; Accepted: 6 April 2017; Published: 12 April 2017 Abstract: The generalist entomopathogenic fungus, Metarhizium brunneum, has proved to have great potential as a versatile biological pest control agent.
    [Show full text]
  • Interactions Between Two Invertebrate Pathogens: an Endophytic Fungus and an Externally Applied Bacterium
    fmicb-11-522368 November 26, 2020 Time: 12:46 # 1 ORIGINAL RESEARCH published: 30 November 2020 doi: 10.3389/fmicb.2020.522368 Interactions Between Two Invertebrate Pathogens: An Endophytic Fungus and an Externally Applied Bacterium Waqas Wakil1*, Muhammad Tahir1,2, Abdullah M. Al-Sadi3 and David Shapiro-Ilan4* 1 Department of Entomology, University of Agriculture, Faisalabad, Pakistan, 2 Department of Entomology, College of Agriculture and Environmental Sciences, The Islamia University, Bahawalpur, Pakistan, 3 Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman, 4 USDA-ARS, SEFTNRL, Byron, GA, United States The members of family Noctuidae exist in diverse environments and many species from this group are of agriculture importance, particularly Helicoverpa spp. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a major pest of many legumes and cereal crops. Due to environmental and regulatory concerns, safe alternatives to broad spectrum chemical insecticides are needed for the control of key noctuid pests such Edited by: as H. armigera. A strain of Beauveria bassiana (Cordycipitaceae: Hypocreales) was Chengshu Wang, evaluated for its ability to colonize endophytically in chickpea plants, and its effectiveness Center for Excellence in Molecular against second (L2) and fourth (L4) larval instars of H. armigera. B. bassiana was Plant Sciences, Chinese Academy of Sciences, China inoculated to chickpea plants through injection and endophytic establishment was Reviewed by: confirmed by re-isolating the fungi from leaf samples. A detached leaf assay was used Sheng-hua Ying, to evaluate pathogenicity. Bacillus thuringiensis was also applied to both larval stages Zhejiang University, China Bo Huang, through leaf dip method.
    [Show full text]