Supergene Evolution Via Stepwise Duplications and Neofunctionalization of a Floral-Organ Identity Gene

Total Page:16

File Type:pdf, Size:1020Kb

Supergene Evolution Via Stepwise Duplications and Neofunctionalization of a Floral-Organ Identity Gene Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene Cuong Nguyen Huua, Barbara Kellerb, Elena Contib, Christian Kappela, and Michael Lenharda,1 aInstitute for Biochemistry and Biology, University of Potsdam, D-14476 Potsdam-Golm, Germany; and bDepartment of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland Edited by June B. Nasrallah, Cornell University, Ithaca, NY, and approved August 5, 2020 (received for review April 7, 2020) Heterostyly represents a fascinating adaptation to promote out- addition, self-incompatibility is present in many distylous species breeding in plants that evolved multiple times independently. (9). In all examined cases, distyly is under simple Mendelian While L-morph individuals form flowers with long styles, short genetic control, with a dominant and a recessive haplotype at the anthers, and small pollen grains, S-morph individuals have flowers single S locus determining the morphs (10). With a few excep- with short styles, long anthers, and large pollen grains. The differ- tions, the dominant S haplotype causes S-morph and the reces- ence between the morphs is controlled by an S-locus “supergene” sive s haplotype L-morph flowers. Rather than a single gene, the consisting of several distinct genes that determine different traits S locus represents a supergene, that is, a chromosomal region of the syndrome and are held together, because recombination with at least two tightly linked genes that determine the different between them is suppressed. In Primula, the S locus is a roughly aspects of a coadapted set of phenotypes (10–12). Similar su- 300-kb hemizygous region containing five predicted genes. How- pergenes underlie many fascinating coadapted phenotypes in ever, with one exception, their roles remain unclear, as does the plants and animals (13–16), and their evolutionary buildup is evolutionary buildup of the S locus. Here we demonstrate that the often only incompletely understood. MADS-box GLOBOSA2 (GLO2) gene at the S locus determines an- The primrose genus Primula is the most studied model for ther position. In Primula forbesii S-morph plants, GLO2 promotes distyly (17). Primula flowers show reciprocal herkogamy, pollen growth by cell expansion in the fused tube of petals and stamen polymorphism, and self-incompatibility, with the dominant S and filaments beneath the anther insertion point; by contrast, neither recessive s haplotypes producing S- and L-morph flowers, re- pollen size nor male incompatibility is affected by GLO2 activity. spectively (3, 18, 19). Based on classical genetic studies, the S PLANT BIOLOGY GLO1 GLO2 The paralogue , from which arose by duplication, has locus supergene has been proposed to contain at least three maintained the ancestral B-class function in specifying petal and separable individual loci: G, controlling style length; A, deter- GLO2 stamen identity, indicating that underwent neofunctionali- mining anther position; and P, controlling pollen size and zation, likely at the level of the encoded protein. Genetic mapping number (10). Style length and female-compatibility type have and phylogenetic analysis indicate that the duplications giving rise CYP734A50 GLO2 never been genetically separated (20, 21); by contrast, male to the style-length-determining gene and to oc- compatibility is likely controlled by a locus distinct from A and P curred sequentially, with the CYP734A50 duplication likely the (21, 22). At the molecular level, the dominant S-locus haplotype first. Together these results provide the most detailed insight into represents a roughly 280-kb-long genomic segment that is the assembly of a plant supergene yet and have important impli- hemizygous; specifically, it is present only on the chromosome cations for the evolution of heterostyly. with the S haplotype but missing from the chromosome with the recessive s haplotype (23–25). Five genes have been predicted to heterostyly | Primula | supergene | gene duplication | neofunctionalization Significance lowering plants have evolved many different adaptations to Fpromote efficient cross-pollination (1, 2). Some of the most fascinating of these are found in the group of stylar polymor- Heterostyly is an adaptation to promote outbreeding in plants. phisms that often combine reciprocal herkogamy with self- In heterostylous primroses, plants form flowers either with incompatibility (1). Individuals of species with stylar polymor- long styles and low anthers or with short styles and high an- phism fall into two or three classes, or morphs, that differ in their thers. This difference is due to a chromosomal segment con- taining five predicted genes, yet their roles and the evolution arrangement of male and female reproductive organs. In par- of this segment remain unclear. Here we identify the gene ticular, male and female organs are physically separated within a responsible for raising the anthers in short-styled flowers. This flower, and this herkogamy is reciprocal between the morphs in gene arose by duplication from a classical floral-organ identity most species, with anthers in one morph located in the analogous gene and gained a novel function. Surprisingly, the responsible position to the style in the other, and vice versa. As a result, pollen chromosomal segment appears to have evolved by stepwise from the different morphs is deposited in a spatially segregated gene duplications rather than duplication of an entire chro- manner on the bodies of pollinators (3), resulting in preferential mosomal block. These findings thus provide detailed insight cross-pollination between the morphs and preventing pollen into the evolution of complex polymorphisms involving dif- wastage and the formation of less fit inbred progeny. Often, re- ferent individual traits. ciprocal herkogamy is complemented by self-incompatibility to prevent self-fertilization; with only two or three compatibility types Author contributions: C.N.H., B.K., E.C., C.K., and M.L. designed research; C.N.H., B.K., and corresponding to the different morphs this manifests as an intra- C.K. performed research; C.N.H., B.K., C.K., and M.L. analyzed data; and M.L. wrote morph incompatibility (4, 5). the paper. An intensively studied stylar polymorphism is heterostyly The authors declare no competing interest. (6–8). In the simplest case, distyly, individuals either form This article is a PNAS Direct Submission. flowers with short styles and high anthers (S-morph) or flowers Published under the PNAS license. with long styles and low anthers (L-morph). Additional poly- 1To whom correspondence may be addressed. Email: [email protected]. morphisms can be associated with this reciprocal herkogamy; for This article contains supporting information online at https://www.pnas.org/lookup/suppl/ example, in many species S-morph flowers produce larger, but doi:10.1073/pnas.2006296117/-/DCSupplemental. fewer, pollen grains compared to L-morph flowers (9). In www.pnas.org/cgi/doi/10.1073/pnas.2006296117 PNAS Latest Articles | 1of10 Downloaded by guest on September 30, 2021 reside in this 280-kb segment based on its sequence in Primula brassinosteroids, a class of phytohormones promoting cell elon- vulgaris and the closely related Primula veris (25). This archi- gation, and thus suppresses style elongation in S-morph flowers. tecture of the S locus with a large hemizygous region appears to Despite this important progress, a number of key questions be conserved in five species belonging to different clades of the remain unanswered. One concerns the identity of the other two genus Primula (25), yet whether all five predicted genes are genetically defined loci, A and P, which determine anther posi- present at the S locus throughout the different Primula species is tion and pollen size, respectively. The GLO2 gene represents a unknown. The five genes predicted in P. vulgaris and P. veris are plausible candidate for the A locus; in fact, a transposon inser- tion in GLO2 of P. vulgaris has been reported to result in a short- CYP734A50, encoding a cytochrome P450; GLOBOSA2 (also homostyle phenotype (23). However, no description of the mutant known as GLOT), coding for a B-class homoeotic MADS- phenotype has been provided, nor has this finding been confirmed domain transcription factor; a KELCH F-BOX PROTEIN by an independent allele. Thus, the identity of the GLO2 gene (KFBT) gene; a gene encoding a PUMILIO RNA-binding pro- T with the A locus remains to be firmly established. As for P,no tein (PUM ); and a gene encoding a CONSERVED C-TER- information is currently available about its molecular nature. T MINAL DOMAIN (CCM ) protein. [Naming of the genes The second major unresolved question concerns the evolu- follows priority regarding their first publications (23, 26, 27).] Of tionary buildup of the S locus, both regarding its chromosomal these, CYP734A50 has been shown to correspond to the G locus assembly and the sequence of trait changes. Clear paralogues of (26). The encoded cytochrome P450 monooxygenase inactivates CYP734A50, GLO2, and CCMT are found outside of the S locus, A B C ns ns GLO1 GLO2 ns *** Relative expression of Relative expression of GLO2 GLO2 GLO2 GLO2 L-morph L-morph S-morph S-morph S-morph S-morph L-morph L-morph VIGS-GLO2 VIGS-GLO2 L-morph VIGS- L-morph VIGS- S-morph VIGS- S-morph VIGS- DFEGH ns *** 6.0 2.5 40 * 4.0 * *** *** 2.0 30 *** *** 30 3.0 4.0 *** 1.5 *** *** 20 2.0 1.0 20 2.0 Anther height (mm) 1.0 0.5 10 Length of corolla tube (mm) 10 Cell length (below anther) (µm) Cell length (above anther) (µm) Diameter of corolla mouth mm) 0.0 0.0 0.0 GLO2 GLO2 GLO2 GLO2 GLO2 L-morph L-morph L-morph S-morph S-morph L-morph S-morph S-morph L-morph S-morph S-morph VIGS- S-morph VIGS- S-morph VIGS- S-morph VIGS- S-morph VIGS- Fig. 1. VIGS of GLO2 results in short-homostylous flowers.
Recommended publications
  • A Supergene-Linked Estrogen Receptor Drives Alternative Phenotypes in a Polymorphic Songbird
    A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird Jennifer R. Merritta,1, Kathleen E. Grogana, Wendy M. Zinzow-Kramera, Dan Sunb, Eric A. Ortlundc, Soojin V. Yib, and Donna L. Maneya aDepartment of Psychology, Emory University, Atlanta, GA 30322; bSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332; and cDepartment of Biochemistry, Emory University, Atlanta, GA 30322 Edited by Gene E. Robinson, University of Illinois at Urbana–Champaign, Urbana, IL, and approved July 8, 2020 (received for review June 3, 2020) Behavioral evolution relies on genetic changes, yet few behaviors tan-striped (TS) morph are homozygous for the standard ar- can be traced to specific genetic sequences in vertebrates. Here we rangement, ZAL2 (13, 14) (Fig. 1A). The rearrangement is provide experimental evidence showing that differentiation of a maintained in the population because of the species’ unique dis- single gene has contributed to the evolution of divergent behav- assortative mating system; nearly every breeding pair consists of ioral phenotypes in the white-throated sparrow, a common back- one individual of each morph (15). Because almost all WS birds yard songbird. In this species, a series of chromosomal inversions are heterozygous for ZAL2m (15, 16), this mating system keeps has formed a supergene that segregates with an aggressive phe- ZAL2m in a near-constant state of heterozygosity (Fig. 1B), pro- notype. The supergene has captured ESR1, the gene that encodes foundly suppressing recombination and causing it to differentiate estrogen receptor α (ERα); as a result, this gene is accumulating from ZAL2 (15, 17). changes that now distinguish the supergene allele from the stan- The rearranged region of ZAL2m in white-throated sparrows dard allele.
    [Show full text]
  • Stance As Nonself Initiates a Complex Cascade of Events Which
    JOURNAL OF SURGICAL RESEARCH 39, l72- 18 1 ( 1985) CURRENT RESEARCH REVIEW Major Histocompatibility Complex Regulation of the Immune Response DAVID H. GUTMANN, PH.D., AND JOHN E. NIEDERHUBER, M.D. Departments of Microbiology and Immunology and Surgery, The University of Michigan Medical School, Ann Arbor, Michigan 48109 Submitted for publication July 18, 1984 The ability of an organism to distinguish self from nonself is determined by a cluster of genes located in the major histocompatibility complex. Recent advances in molecular genetics and cellular immunology have begun to elucidate the mechanisms responsible for immune response regulation. In this review article, the genetic organization of the murine and human major histocompatibility complexes and the manner by which their gene products modulate immune responsiveness are discussed. 0 1985 Academic Press. Inc. INTRODUCTION ulate the immune response in several ways. Whether this regulation is their primary The body’s recognition of a foreign sub- function is not clear, as it seemspossible that stance as nonself initiates a complex cascade other as yet undiscovered levels of regulation of events which leads to an immune response. of the immune response may exist. Since Regulation of this immune response is con- much of our understanding of the role of the trolled by a cluster of tightly linked genes MHC in immune regulation has resulted encoded within the major histocompatibility from studies on the mouse MHC, the struc- complex (MHC) [ 1, 21. While the MHC was ture and function of both mouse and, when originally defined as the site for control of available, human MHC molecules will be graft rejection, it is now known that MHC discussed in this review.
    [Show full text]
  • Chromosomal Rearrangements Maintain a Polymorphic Supergene Controlling Butterfly Mimicry
    Published in which should be cited to refer to this work. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry Mathieu Joron1,2,3, Lise Frezal1*, Robert T. Jones4*, Nicola L. Chamberlain4, Siu F. Lee5, Christoph R. Haag6, Annabel Whibley1, Michel Becuwe2, Simon W. Baxter7, Laura Ferguson7, Paul A. Wilkinson4, Camilo Salazar8, Claire Davidson9, Richard Clark9, Michael A. Quail9, Helen Beasley9, Rebecca Glithero9, Christine Lloyd9, Sarah Sims9, Matthew C. Jones9, Jane Rogers9, Chris D. Jiggins7 & Richard H. ffrench-Constant4 Supergenes are tight clusters of loci that facilitate the co-segregation be tightly linked from the outset or whether the association between of adaptive variation, providing integrated control of complex elements can be acquired, either gradually or in a single mutational adaptive phenotypes1. Polymorphic supergenes, in which specific step7–10,16–19. Chromosomal rearrangements, which can bring genes into combinations of traits are maintained within a single population, closer physical association and influence local recombination, offer one were first described for ‘pin’ and ‘thrum’ floral types in Primula1 and route through which supergenes may be assembled from more loosely Fagopyrum2, but classic examples are also found in insect mimicry3–5 linked components7,8,17–19. Although there are many cases of poly- and snail morphology6. Understanding the evolutionary mechan- morphic inversions associated with adaptive variation12,20, variation is isms that generate these co-adapted gene sets, as well as the mode in most cases geographical, rather than being maintained within popula- of limiting the production of unfit recombinant forms, remains a tions, and effects on local adaptation are cumulative. In contrast, super- substantial challenge7–10.
    [Show full text]
  • Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion
    Report Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion Graphical Abstract Authors Paul Jay, Annabel Whibley, Lise Frezal, ..., James Mallet, Kanchon K. Dasmahapatra, Mathieu Joron Correspondence [email protected] (P.J.), [email protected] (M.J.) In Brief Supergenes are genetic architectures underlying complex polymorphisms in many organisms. Jay et al. show that a supergene controlling mimicry polymorphism in a butterfly was formed by the introgression of a chromosomal inversion from another species. Their results emphasize the role of hybridization in the evolution of novel genetic architectures. Highlights d Chromosomal inversions underlie wing-pattern polymorphism in a Heliconius butterfly d Inversion was introgressed from another species, then maintained as a polymorphism d 1.3 Ma of evolution in separate taxa explains the divergence of supergene haplotypes d Introgression may play a key role in the formation of novel genetic architectures Jay et al., 2018, Current Biology 28, 1–7 June 4, 2018 ª 2018 Elsevier Ltd. https://doi.org/10.1016/j.cub.2018.04.072 Please cite this article in press as: Jay et al., Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion, Current Biology (2018), https://doi.org/10.1016/j.cub.2018.04.072 Current Biology Report Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion Paul Jay,1,* Annabel Whibley,2 Lise Frezal, 3 Marı´aA´ ngeles Rodrı´guez de Cara,1 Reuben W. Nowell,4 James Mallet,5 Kanchon K. Dasmahapatra,6 and
    [Show full text]
  • A Behavioral Polymorphism Caused by a Single Gene Inside a Supergene
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.897637; this version posted January 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Merritt et al., 13 JAN 2020 – preprint copy – bioRxiv A behavioral polymorphism caused by a single gene inside a supergene Jennifer R. Merritta,1, Kathleen E. Grogana, Wendy M. Zinzow-Kramera, Dan Sunb, Eric A. Ortlundc, Soojin V. Yib, Donna L. Maneya a Department of Psychology, Emory University, Atlanta, GA 30322 b School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 c Department of Biochemistry, Emory University, Atlanta, GA 30322 1 Correspondence: [email protected] Abstract Behavioral evolution relies on genetic changes, yet few social behaviors can be traced to specific genetic seQuences in vertebrates. Here, we show experimental evidence that differentiation of a single gene has contributed to divergent behavioral phenotypes in the white-throated sparrow, a common North American songbird. In this species, one of two alleles of ESR1, encoding estrogen receptor a (ERa), has been captured inside a differentiating supergene that segregates with an aggressive phenotype, such that ESR1 expression predicts aggression. Here, we show that the aggressive phenotype associated with the supergene is prevented by ESR1 knockdown in a single brain region. Next, we show that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Cis-regulatory variation between the two alleles affects transcription factor binding sites, DNA methylation, and rates of transcription.
    [Show full text]
  • Mutation Accumulation in Chromosomal Inversions Maintains Wing Pattern Polymorphism in a Butterfly
    bioRxiv preprint doi: https://doi.org/10.1101/736504; this version posted August 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mutation accumulation in chromosomal inversions maintains wing pattern polymorphism in a butterfly Paul Jay1 *, Mathieu Chouteau1,2 *, Annabel Whibley3, Héloïse Bastide4, Violaine Llaurens4, Hugues Parrinello5, and Mathieu Joron1 1CEFE, CNRS, Université de Montpellier, Université Paul Valery, Montpellier 3, EPHE, IRD, Montpellier, France 2LEEISA, USR 63456, Université De Guyane, CNRS Guyane, IFREMER Guyane, 275 route de Montabo, 797334 Cayenne, French Guiana 3School of Biological Sciences, University of Auckland, Auckland, New Zealand 4ISYEB, UMR7205 CNRS-MNHN-9UPMC-EPHE, Muséum national d’Histoire naturelle, CP 50,45 rue Buffon, 75005 Paris, 10France. 5MGX, Biocampus Montpellier, CNRS, INSERM, Université Montpellier, Montpellier, France *These authors contributed equally. While natural selection favours the fittest genotype, polymor- The Amazonian butterfly Heliconius numata displays wing phisms are maintained over evolutionary timescales in numer- pattern polymorphism with up to seven morphs coexisting ous species. Why these long-lived polymorphisms are often as- within a single locality, each one engaged in warning color sociated with chromosomal rearrangements remains obscure. mimicry with distinct groups of toxic species. Adult morphs Combining genome assemblies, population genomic analyses, vary in mimicry protection against predators and in mating and fitness assays, we studied the factors maintaining multiple success via disassortative mate preferences (13, 16). Poly- mimetic morphs in the butterfly Heliconius numata.
    [Show full text]
  • Multiple Convergent Supergene Evolution Events in Mating-Type
    Multiple convergent supergene evolution events in mating-type chromosomes Sara Branco, Fantin Carpentier, Ricardo Rodriguez de la Vega, Hélène Badouin, Alodie Snirc, Stéphanie Le Prieur, Marco Coelho, Damien de Vienne, Fanny Hartmann, Dominik Begerow, et al. To cite this version: Sara Branco, Fantin Carpentier, Ricardo Rodriguez de la Vega, Hélène Badouin, Alodie Snirc, et al.. Multiple convergent supergene evolution events in mating-type chromosomes. Nature Communica- tions, Nature Publishing Group, 2018, 9 (1), pp.2000. 10.1038/s41467-018-04380-9. hal-01796609 HAL Id: hal-01796609 https://hal.archives-ouvertes.fr/hal-01796609 Submitted on 21 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE DOI: 10.1038/s41467-018-04380-9 OPEN Multiple convergent supergene evolution events in mating-type chromosomes Sara Branco1,2, Fantin Carpentier1, Ricardo C. Rodríguez de la Vega 1, Hélène Badouin1,3, Alodie Snirc1, Stéphanie Le Prieur1, Marco A. Coelho4, Damien M. de Vienne3, Fanny E. Hartmann1, Dominik Begerow5, Michael E. Hood6 & Tatiana Giraud 1 Convergent adaptation provides unique insights into the predictability of evolution and ulti- 1234567890():,; mately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution.
    [Show full text]
  • Simple Inheritance, Complex Regulation: Supergene‐Mediated
    Received: 15 January 2020 | Revised: 3 July 2020 | Accepted: 18 July 2020 DOI: 10.1111/mec.15581 ORIGINAL ARTICLE Simple inheritance, complex regulation: Supergene-mediated fire ant queen polymorphism Samuel V. Arsenault1 | Joanie T. King1,2 | Sasha Kay1 | Kip D. Lacy1,3 | Kenneth G. Ross1 | Brendan G. Hunt1 1Department of Entomology, University of Georgia, Athens, GA, USA Abstract 2Department of Entomology, Texas A&M The fire ant Solenopsis invicta exists in two alternate social forms: monogyne nests University, College Station, TX, USA contain a single reproductive queen and polygyne nests contain multiple reproduc- 3Laboratory of Social Evolution and Behavior, The Rockefeller University, New tive queens. This colony-level social polymorphism corresponds with individual dif- York, NY, USA ferences in queen physiology, queen dispersal patterns and worker discrimination Correspondence behaviours, all evidently regulated by an inversion-based supergene that spans more Samuel V. Arsenault, Kenneth G. Ross, than 13 Mb of a “social chromosome,” contains over 400 protein-coding genes and and Brendan G. Hunt, Department of Entomology, University of Georgia, Athens, rarely undergoes recombination. The specific mechanisms by which this supergene GA, USA. influences expression of the many distinctive features that characterize the alternate Email: [email protected]; [email protected]; [email protected] forms remain almost wholly unknown. To advance our understanding of these mech- anisms, we explore the effects of social chromosome genotype and natal colony so- Funding information Division of Integrative Organismal Systems, cial form on gene expression in queens sampled as they embarked on nuptial flights, Grant/Award Number: 1755130; Division using RNA-sequencing of brains and ovaries.
    [Show full text]
  • Avian Supergenes
    PERSPECTIVES EVOLUTION important role in generating biological diver- Lekking ruffs. From left to right, a female, an sity in taxa ranging from plants to humans. independent male, and a satellite male ruff. A third The mimetic wing patterns of butterflies are type of male ruff closely resembles the female. Recent Avian a particularly well-documented example of research has shed light on the genetic underpinnings of how supergenes can underlie complex ad- the ruff’s complex reproductive strategies (1, 2). aptations (4). However, knowledge of the supergenes genetic architecture of supergenes remains attraction and attempt to “steal” copula- limited, and the molecular mechanisms by tions. Faeder males (<1%) mimic females Genetic data reveal how which they can generate complex pheno- in their plumage and smaller size and also two complex bird mating types are unclear. The recent studies of the steal copulations. ruff (1, 2) and the white-throated sparrow (3) As Küpper et al. (1) and Lamichhaney et systems evolved provide critical advances to our understand- al. (2) now show, these three reproductive ing of these aspects of supergenes. behaviors and associated phenotypes are de- By Scott Taylor 1,2 and Leonardo Campagna1,2 Reduced recombination within super- termined by a ~4.5 Mb inversion located on genes is central to their evolution, allowing an autosome (see the figure). Independent s the extravagant displays of birds of multiple genes to be inherited as a single males carry two copies of the ancestral, non- paradise remind us, many birds go to linked unit and setting the stage for their inverted chromosome: They do not possess great lengths to pass their genes on coevolution.
    [Show full text]
  • Unravelling the Genes Forming the Wing Pattern Supergene in the Polymorphic Butterfy Heliconius Numata Suzanne V
    Saenko et al. EvoDevo (2019) 10:16 https://doi.org/10.1186/s13227-019-0129-2 EvoDevo RESEARCH Open Access Unravelling the genes forming the wing pattern supergene in the polymorphic butterfy Heliconius numata Suzanne V. Saenko1†, Mathieu Chouteau2†, Florence Piron‑Prunier1, Corinne Blugeon3, Mathieu Joron4 and Violaine Llaurens1* Abstract Background: Unravelling the genetic basis of polymorphic characters is central to our understanding of the ori‑ gins and diversifcation of living organisms. Recently, supergenes have been implicated in a wide range of complex polymorphisms, from adaptive colouration in butterfies and fsh to reproductive strategies in birds and plants. The concept of a supergene is now a hot topic in biology, and identifcation of its functional elements is needed to shed light on the evolution of highly divergent adaptive traits. Here, we apply diferent gene expression analyses to study the supergene P that controls polymorphism of mimetic wing colour patterns in the neotropical butterfy Heliconius numata. Results: We performed de novo transcriptome assembly and diferential expression analyses using high‑throughput Illumina RNA sequencing on developing wing discs of diferent H. numata morphs. Within the P interval, 30 and 17 of the 191 transcripts were expressed diferentially in prepupae and day‑1 pupae, respectively. Among these is the gene cortex, known to play a role in wing pattern formation in Heliconius and other Lepidoptera. Our in situ hybridization experiments confrmed the relationship between cortex expression and adult wing patterns. Conclusions: This study found the majority of genes in the P interval to be expressed in the developing wing discs during the critical stages of colour pattern formation, and detect drastic changes in expression patterns in multiple genes associated with structural variants.
    [Show full text]
  • The Chicken Major Histocompatibility Complex and Disease
    Animal Science Publications Animal Science 1998 The chicken major histocompatibility complex and disease Susan J. Lamont Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ans_pubs Part of the Agriculture Commons, Animal Sciences Commons, Genetics Commons, and the Immunology and Infectious Disease Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ans_pubs/855. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Animal Science at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Science Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The chicken major histocompatibility complex and disease Abstract The chicken major histocompatibility complex (MHC), or B complex, consists of several clusters of highly polymorphic genes, some of which are associated with disease resistance. The class I and class II antigens resemble their mammalian counterparts in the encoded protein structure. The class IV region encodes the B blood group antigens, which are readily identified yb serological blood-typing. The class III region appears to be divided in chickens, with some elements that are MHC-linked and others that map elsewhere. In addition the Rfp-Y system, which bears a strong similarity to the MHC, maps to the opposite side of the nucleolar organiser region on the same microchromosome as the MHC. Each class of MHC genes is a potential candidate for a role in disease resistance.
    [Show full text]
  • A Supergene-Linked Estrogen Receptor Drives Alternative Phenotypes in a Polymorphic Songbird
    A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird Jennifer R. Merritta,1, Kathleen E. Grogana, Wendy M. Zinzow-Kramera, Dan Sunb, Eric A. Ortlundc, Soojin V. Yib, and Donna L. Maneya aDepartment of Psychology, Emory University, Atlanta, GA 30322; bSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332; and cDepartment of Biochemistry, Emory University, Atlanta, GA 30322 Edited by Gene E. Robinson, University of Illinois at Urbana–Champaign, Urbana, IL, and approved July 8, 2020 (received for review June 3, 2020) Behavioral evolution relies on genetic changes, yet few behaviors tan-striped (TS) morph are homozygous for the standard ar- can be traced to specific genetic sequences in vertebrates. Here we rangement, ZAL2 (13, 14) (Fig. 1A). The rearrangement is provide experimental evidence showing that differentiation of a maintained in the population because of the species’ unique dis- single gene has contributed to the evolution of divergent behav- assortative mating system; nearly every breeding pair consists of ioral phenotypes in the white-throated sparrow, a common back- one individual of each morph (15). Because almost all WS birds yard songbird. In this species, a series of chromosomal inversions are heterozygous for ZAL2m (15, 16), this mating system keeps has formed a supergene that segregates with an aggressive phe- ZAL2m in a near-constant state of heterozygosity (Fig. 1B), pro- notype. The supergene has captured ESR1, the gene that encodes foundly suppressing recombination and causing it to differentiate estrogen receptor α (ERα); as a result, this gene is accumulating from ZAL2 (15, 17). changes that now distinguish the supergene allele from the stan- The rearranged region of ZAL2m in white-throated sparrows dard allele.
    [Show full text]