From Aa to Zyzzyxdonta – Taxonomy Can Be Fun!!

Total Page:16

File Type:pdf, Size:1020Kb

From Aa to Zyzzyxdonta – Taxonomy Can Be Fun!! From Aa to Zyzzyxdonta – Taxonomy can be fun!! Brian Goodwin From Aa to Zyzzyxdonta • The shortest allowable scientific name is one of 2 letters. • Alphabetically, therefore, Aa – which is either a snail or an orchid – comes first. • Immediately following it is Aaadonta, while one of the last names alphabetically is Zyzzyxdonta, another endodontoid snail. • Zyzzyxdonta has characters the extreme opposite of Aaadonta! An early interest in animals • First pair of binoculars • Discover birds! The scientific name for genera in the Thrush family is Turdus!!! Abra cadabra became Theora cadabra which became Theora mesopotamica Agra cadabra Agra vate Agra vation Agra phobia •Celebrities •Puns Charles Darwin David Attenborough Agra beegees Agra katewinsletae Agra schwarzeneggeri Anomphalus jaggerius Jaggermeryx Scaptia beyonceae A genus of ferns called Gaga Manfred Parth, a German conchologist, named two new species of Bursidae after his two children – Cristina and Luca Bufonaria cristinae Bursa lucaensis Bursa borisbeckeri I dedicate the new species to Boris Becker, in my view the greatest individual athlete of all time. Paronomasia, is a form of word play that suggests two or more meanings, by exploiting multiple meanings of words, or of similar- sounding words, for an intended humorous or rhetorical effect. Puns Paronomasia, is a form of word play that suggests two or more meanings, by exploiting multiple meanings of words, or of similar- sounding words, for an intended humorous or rhetorical effect. Apophyllus now Eubetia bigaulae You betcha, by golly! In 2002 Neal Evanhuis described 11 new species of small, brown furry flies. He called the genus Pieza Pieza species • Pieza rhea • Pieza pi • Pieza kake • Pieza deresistans Vampyroteuthis infernalis translates as: “Vampire squid from hell” Nilgai or Blue Bull In 1766 Peter Simon Pallas described Antilope tragocamelus. In 1816 de Blainville added some bovid genera and it became Boselaphus tragocamelus. Boselaphus tragocamelus translates as: “Ox-deer- goat-camel” Sea slug – Phyllidia polkadotsa The End .
Recommended publications
  • Terry L. Erwin (1940–2020): Un Científico Muy Agra-Dable
    Received: 4 June 2020 | Accepted: 9 June 2020 DOI: 10.1111/btp.12828 COMMENTARY REMEMBRANCE: Terry L. Erwin (1940–2020): Un científico muy Agra-dable Carlos García-Robledo1 | Erin K. Kuprewicz1 | W. John Kress2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 2National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Correspondence: Carlos García-Robledo, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. Email: [email protected] It is with a profound sadness that we acknowledge the passing of the past 10 years, Terry has performed most of his fieldwork in the ineffable Terry L. Erwin on 11 May 2020. Along with being a Yasuní National Park, Ecuador, where he worked every summer until true giant in the fields of entomology and biodiversity science, Terry last year. was a steadfast colleague, an unsurpassed curator of specimens and If you asked Terry to classify himself, he would tell you that he information, an indefatigable mentor, and most of all a dear friend. was a carabidologist: an entomologist who studies the taxonomy Terry was a powerhouse in the field of biodiversity science, but he of a particularly charismatic and beautiful group of predatory bee- was also a very “nice” (= “agradable” in Spanish) scientist who emitted tles (specializing even further on the genus Agra). However, if you a playfulness that belied his extensive knowledge and deep under- asked Terry what he thought of as his most significant contribution
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Vegetation Cover Drives Arthropod Communities in Mediterranean/Subtropical Green Roof Habitats
    sustainability Article Vegetation Cover Drives Arthropod Communities in Mediterranean/Subtropical Green Roof Habitats Ibrahim N. A. Salman * and Leon Blaustein Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; [email protected] * Correspondence: [email protected] Received: 24 October 2018; Accepted: 13 November 2018; Published: 15 November 2018 Abstract: Worldwide, urban areas are expanding both in size and number, which results in a decline in habitats suitable for urban flora and fauna. The construction of urban green features, such as green roofs, may provide suitable habitat patches for many species in urban areas. On green roofs, two approaches have been used to select plants—i.e., matching similar habitat to green roofs (habitat template approach) or identifying plants with suitable traits (plant trait approach). While both approaches may result in suitable habitats for arthropods, how arthropods respond to different combinations of plants is an open question. The aim of this study was to investigate how the structural complexity of different plant forms can affect the abundance and richness of arthropods on green roofs. The experimental design crossed the presence and absence of annuals with three Sedum sediforme (Jacq.) Pau (common name: stonecrops) treatments—i.e., uniformly disrupted Sedum, clumped disrupted Sedum, and no Sedum. We hypothesized that an increased structural diversity due to the coexistence of different life forms of plants on roofs is positively related to the abundance and richness of arthropods. We found that arthropod abundance and richness were positively associated with the percent of vegetation cover and negatively associated with substrate temperature.
    [Show full text]
  • Benthic Habitats and Biodiversity of Dampier and Montebello Marine
    CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM),
    [Show full text]
  • JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT Jb
    JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT Jb. Geol. B.-A. ISSN 0016–7800 Band 149 Heft 1 S. 61–109 Wien, Juli 2009 A Revision of the Tonnoidea (Caenogastropoda, Gastropoda) from the Miocene Paratethys and their Palaeobiogeographic Implications BERNARD LANDAU*), MATHIAS HARZHAUSER**) & ALAN G. BEU***) 2 Text-Figures, 10 Plates Paratethys Miozän Gastropoda Caenogastropoda Tonnoidea Österreichische Karte 1 : 50.000 Biogeographie Blatt 96 Taxonomie Contents 1. Zusammenfassung . 161 1. Abstract . 162 1. Introduction . 162 2. Geography and Stratigraphy . 162 3. Material . 163 4. Systematics . 163 1. 4.1. Family Tonnidae SUTER, 1913 (1825) . 163 1. 4.2. Family Cassidae LATREILLE, 1825 . 164 1. 4.3. Family Ranellidae J.E. GRAY, 1854 . 170 1. 4.4. Family Bursidae THIELE, 1925 . 175 1. 4.5. Family Personidae J.E. GRAY, 1854 . 179 5. Distribution of Species in Paratethyan Localities . 180 1. 5.1. Diversity versus Stratigraphy . 180 1. 5.2. The North–South Gradient . 181 1. 5.3. Comparison with the Pliocene Tonnoidean Fauna . 181 6. Conclusions . 182 3. Acknowledgements . 182 3. Plates 1–10 . 184 3. References . 104 Revision der Tonnoidea (Caenogastropoda, Gastropoda) aus dem Miozän der Paratethys und paläobiogeographische Folgerungen Zusammenfassung Die im Miozän der Paratethys vertretenen Gastropoden der Überfamilie Tonnoidea werden beschrieben und diskutiert. Insgesamt können 24 Arten nachgewiesen werden. Tonnoidea weisen generell eine ungewöhnliche weite geographische und stratigraphische Verbreitung auf, wie sie bei anderen Gastropoden unbekannt ist. Dementsprechend sind die paratethyalen Arten meist auch in der mediterranen und der atlantischen Bioprovinz vertreten. Einige Arten treten zuerst im mittleren Miozän der Paratethys auf. Insgesamt dokumentiert die Verteilung der tonnoiden Gastropoden in der Parate- thys einen starken klimatischen Einfluss.
    [Show full text]
  • Mollusca, Gastropoda
    Contr. Tert. Quatern. Geol. 32(4) 97-132 43 figs Leiden, December 1995 An outline of cassoidean phylogeny (Mollusca, Gastropoda) Frank Riedel Berlin, Germany Riedel, Frank. An outline of cassoidean phylogeny (Mollusca, Gastropoda). — Contr. Tert. Quatern. Geo!., 32(4): 97-132, 43 figs. Leiden, December 1995. The phylogeny of cassoidean gastropods is reviewed, incorporating most of the biological and palaeontological data from the literature. Several characters have been checked personally and some new data are presented and included in the cladistic analysis. The Laubierinioidea, Calyptraeoidea and Capuloidea are used as outgroups. Twenty-three apomorphies are discussed and used to define cassoid relations at the subfamily level. A classification is presented in which only three families are recognised. The Ranellidae contains the subfamilies Bursinae, Cymatiinae and Ranellinae. The Pisanianurinae is removed from the Ranellidae and attributed to the Laubierinioidea.The Cassidae include the Cassinae, Oocorythinae, Phaliinae and Tonninae. The Ranellinae and Oocorythinae are and considered the of their families. The third the both paraphyletic taxa are to represent stem-groups family, Personidae, cannot be subdivided and for anatomical evolved from Cretaceous into subfamilies reasons probably the same Early gastropod ancestor as the Ranellidae. have from Ranellidae the Late Cretaceous. The Cassidae (Oocorythinae) appears to branched off the (Ranellinae) during The first significant radiation of the Ranellidae/Cassidaebranch took place in the Eocene. The Tonninae represents the youngest branch of the phylogenetic tree. Key words — Neomesogastropoda, Cassoidea, ecology, morphology, fossil evidence, systematics. Dr F. Riedei, Freie Universitat Berlin, Institut fiir Palaontologie, MalteserstraBe 74-100, Haus D, D-12249 Berlin, Germany. Contents superfamily, some of them presenting a complete classifi- cation.
    [Show full text]
  • Distribution and Structure of Arthropod Communities in Relation to Resource Patches and Spatial Scale in Dryland Woodland Ecosystems
    Distribution and structure of arthropod communities in relation to resource patches and spatial scale in dryland woodland ecosystems Alan B. C. Kwok Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney, NSW, 2052 Australia PhD thesis March 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Kwok First name: Alan Other name/s: Bing Choong Abbreviation for degree as given in the University calendar: PhD School: Biological, Earth and Environmental Faculty: Science Sciences Title: Distribution and structure of arthropod communities in relation to resource patches and spatial scale in dryland woodland ecosystems Abstract 350 words maximum: (PLEASE TYPE) In dryland ecosystems, resources such as water, nutrients and habitat are concentrated into discrete patches. This resource concentration occurs at fine (e.g. around trees, grasses or logs) and broad (e.g. habitat remnants within an agricultural matrix) scales. Arthropods, which include insects, spiders, and a range of other invertebrates, provide a range of critical ecosystem functions in drylands. Arthropods may be particularly sensitive to changes in resource concentration given their small size and habitat requirements. Limited research, however, has examined how arthropods respond to changes in resource concentration across different spatial scales. This thesis examines how the concentration of resources affects the distribution and structure of arthropod communities at multiple spatial scales in south-eastern Australia. Chapter 1 provides an overview of resource patchiness in arid and semi-arid ecosystems, and describes how it is known to affect the biota. Chapters 2 to 4 investigate how the fine-scale distribution of resources (plants, and plant-associated patches) affects the distribution and composition of arthropod communities at local (plant-plant) scales.
    [Show full text]
  • Gradual Miocene to Pleistocene Uplift of the Central American Isthmus: Evidence from Tropical American Tonnoidean Gastropods Alan G
    J. Paleont., 75(3), 2001, pp. 706±720 Copyright q 2001, The Paleontological Society 0022-3360/01/0075-706$03.00 GRADUAL MIOCENE TO PLEISTOCENE UPLIFT OF THE CENTRAL AMERICAN ISTHMUS: EVIDENCE FROM TROPICAL AMERICAN TONNOIDEAN GASTROPODS ALAN G. BEU Institute of Geological and Nuclear Sciences, P O Box 30368, Lower Hutt, New Zealand, ,[email protected]. ABSTRACTÐTonnoidean gastropods have planktotrophic larval lives of up to a year and are widely dispersed in ocean currents; the larvae maintain genetic exchange between adult populations. They therefore are expected to respond rapidly to new geographic barriers by either extinction or speciation. Fossil tonnoideans on the opposite coast of the Americas from their present-day range demonstrate that larval transport still was possible through Central America at the time of deposition of the fossils. Early Miocene occurrences of Cypraecassis tenuis (now eastern Paci®c) in the Caribbean probably indicate that constriction of the Central American seaway had commenced by Middle Miocene time. Pliocene larval transport through the seaway is demonstrated by Bursa rugosa (now eastern Paci®c) in Caribbean Miocene-latest Pliocene/Early Pleistocene rocks; Crossata ventricosa (eastern Paci®c) in late Pliocene rocks of Atlantic Panama; Distorsio clathrata (western Atlantic) in middle Pliocene rocks of Ecuador; Cymatium wiegmanni (eastern Paci®c) in middle Pliocene rocks of Atlantic Costa Rica; Sconsia sublaevigata (western Atlantic) in Pliocene rocks of Darien, Paci®c Panama; and Distorsio constricta (eastern Paci®c) in latest Pliocene-Early Pleistocene rocks of Atlantic Costa Rica. Continued Early or middle Pleistocene connections are demonstrated by Cymatium cingulatum (now Atlantic) in the Armuelles Formation of Paci®c Panama.
    [Show full text]
  • Suspicious Insect
    16 Suspicious Insect Ted said, “I have discovered a new insect . The people who discover new insects get to name them . Every living thing has a scientific name . Scientific names are important . This is because the same creature may have different common names in different places . No matter how many common names there are, there is only one scientific name . With scientific names, scientists know they are all talking about the same insect .” “A scientific name is different from a common name,” Dr . Mariposa said . “Do you know in what way?” “I do!” Ted said . “Scientific names have two parts . The names are in Latin or Greek . You can use words from other languages, but then Latin endings are added to them . The first word of the name is capitalized . The first word names the creature’s genus . The second word is not capitalized . The second word names the creature’s species . For example, the common housefly is an insect . Its scientific name is Musca domestica . The monarch butterfly is another kind of insect . The scientific name of the monarch is Danaus plexippus .” Ted continued, “Some of the scientific names are really silly . Beetles are insects . One beetle has the name Agra vation. When you say it, it sounds like the word aggravation . Perhaps the person who named it found the beetle was very aggravated by it! I’ve never been that annoyed by beetles, but I find mosquitoes to be very aggravating insects . Flies are aggravating insects, too . Wasps are especially aggravating insects . One wasp has the name Verae peculya .
    [Show full text]
  • A Review of Fossil Bursidae and Their Use for Phylogeny Calibration
    geodiversitas 2019 ● 41 ● 5 DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) ; Anne Mabille MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (MNHN, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (UPMC, Paris) Gaël Clément (MNHN, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (MNHN, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (UPMC, Paris) Sevket Sen (MNHN, Paris) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres) COUVERTURE / COVER : Aquitanobursa tuberosa (Grateloup, 1833) n. comb., MNHN.F.A70285, Burdigalian of le Peloua, Staadt coll. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Physical, Chemical, and Earth Sciences® – Scopus® Geodiversitas est distribué en version électronique par / Geodiversitas is distributed electronically
    [Show full text]
  • Biotikum-Quellendokument HS20 II ("Biokuriosum") Alle Weblinks Wurden Zuletzt Am 15
    Biotikum-Quellendokument HS20 II ("Biokuriosum") Alle Weblinks wurden zuletzt am 15. November 2020 aufgerufen. Kuriose Namen und ihre Geschichten Papers • T. Erwin. 2010. Agra, arboreal beetles of Neotropical forests: pusilla group and piranha group systematics and notes on their ways of life (Coleoptera, Carabidae, Lebiini, Agrina). Zookeys 66: 1 – 28. Weblink • Weirdest species names • The World's Strangest Scientific Names | Science • Funny or Curious Zoological Names • Conquered lorikeet • Ninjemys • Agra schwarzeneggeri • Agra (beetle) • Spongiforma squarepantsii • Kamera lens • Gelae • Ba humbugi • Aha ha • Han (trilobite) • Pachycephalosaurus • Gollumjapyx smeagol • List of things named after JRR Tolkien and his works • Lucifer (prawn) • Belzebub (prawn) • Mephisto fraserbrunneri • Widemouth blindcat • Neopalpa donaldtrumpi • Binomial nomenclature Bilder • Agra Schwarztzeneggeri • Lucifer gamba prawn shrimp Photoheterotrophe Insekten Papers • Valmalette, J., Dombrovsky, A., Brat, P. et al. Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect. Sci Rep 2, 579 (2012). https://doi.org/10.1038/srep00579 • Moran, N. A., Jarvik, T. Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids. Science 328, 624 (2010). https://doi.org/10.1126/science.1187113 • Altincicek, B., Kovacs, J. L., Gerardo, N. M. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol Let 8, 253 (2011). https://doi.org/10.1098/rsbl.2011.0704 • Plotkin, M., Hod, I.,
    [Show full text]
  • F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera
    F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera Bibliography Thompson, F. C, Evenhuis, N. L. & Sabrosky, C. W. The following bibliography gives full references to 2,982 works cited in the catalog as well as additional ones cited within the bibliography. A concerted effort was made to examine as many of the cited references as possible in order to ensure accurate citation of authorship, date, title, and pagination. References are listed alphabetically by author and chronologically for multiple articles with the same authorship. In cases where more than one article was published by an author(s) in a particular year, a suffix letter follows the year (letters are listed alphabetically according to publication chronology). Authors' names: Names of authors are cited in the bibliography the same as they are in the text for proper association of literature citations with entries in the catalog. Because of the differing treatments of names, especially those containing articles such as "de," "del," "van," "Le," etc., these names are cross-indexed in the bibliography under the various ways in which they may be treated elsewhere. For Russian and other names in Cyrillic and other non-Latin character sets, we follow the spelling used by the authors themselves. Dates of publication: Dating of these works was obtained through various methods in order to obtain as accurate a date of publication as possible for purposes of priority in nomenclature. Dates found in the original works or by outside evidence are placed in brackets after the literature citation.
    [Show full text]