Abstracts from the 13Th International Conference on Cerebral Vascular Biology (CVB 2019)

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from the 13Th International Conference on Cerebral Vascular Biology (CVB 2019) Fluids Barriers CNS 2019, 16(Suppl 1):16 https://doi.org/10.1186/s12987-019-0135-8 Fluids and Barriers of the CNS MEETING ABSTRACTS Open Access Abstracts from the 13th International Conference on Cerebral Vascular Biology (CVB 2019) Miami, FL, USA. 25-28 June 2019 Published: 20 June 2019 I1 vasculature that can be applied to therapy. Other emerging topics dis- 13th International Conference on Cerebral Vascular Biology cussed during the conference will involve impact of life style on modu- Michal Toborek lation of brain barriers, cerebrovascular pathology of the aging brain, University of Miami School of Medicine, Miami, FL targeting cerebral vasculature for regenerative medicine, and the role Correspondence: Michal Toborek ‑ [email protected] of the gut-brain axis. Several activities will be dedicated to trainees, Fluids and Barriers of the CNS 2019, 16(Suppl 1):I1 early stage investigators, and the inclusion of researchers from under- represented groups. The conference strongly promotes ethnic and The 13th International Conference on Cerebral Vascular Biology (CVB gender diversity among the speakers and participants. 2019; http://www.CVB20 19.com) is being organized at the Marriott The major sponsors of CVB 2019 include the NIH (NINDS, NIA, and Miami Biscayne Bay hotel from June 25–28, 2019 in Miami, FL. The NHLBI) that supports, via the R13 grant mechanism, participation of CVB conferences are bi-annual meetings that provide a forum for sci- trainees and early stage investigators, with the emphasis on individu- entists from around the world to discuss their cutting edge research als from under-represented groups. In addition, the NIMH sponsors the on cerebral vascular biology with a focus on CNS barriers, primarily session on strategies of drug delivery into the brain in order to eradi- the blood–brain barrier (BBB). CVB 2019 in Miami will be a continua- cate HIV reservoirs. The Platinum Sponsors of CVB 2019 are the Uni- tion of a very successful conference series that was initiated in 1992. To versity of Miami Clinical and Translational Science Institute (CTSI) and emphasize the importance and international focus of the CVB series, the Jerzy Kukuczka Academy of Physical Education in Poland. The Gold the conferences rotate between North America, Europe, and Asia/Aus- Sponsors are the Department of Biochemistry and Molecular Biology, tralia (1992, Duluth, MN; 1995, Paris, France; 1998, Salishan, OR; 2001, the Miami Project to Cure Paralysis, the McKnight Brain Institute (all Cambridge, UK; 2003, Amarillo, TX; 2005, Muenster, Germany; 2007, at the University of Miami), Florida International University (FIU), and Ottawa, Canada; 2009, Sendai, Japan; 2011, Leiden, The Netherlands; Biogen. Several commercial companies, the Nagai Foundation Tokyo, 2013, Montreal, Canada; 2015, Paris, France; 2017, Melbourne, Aus- the Johns Hopkins Malaria Research Institute, the Nebraska Center tralia). Since the formation of the International Brain Barriers Society for Substance Abuse Research at the University of Nebraska Medical (IBBS) in 2006, CVB conferences are organized under the general aus- Center, and the Department of Surgery at the University of Miami are pices of the IBBS. the Silver Sponsors. Finally, the IBBS, Fluids and Barriers of the CNS, CVB 2019 is being attended by scientists from a broad range of back- and private donors are the Bronze Sponsors and provide poster and grounds and disciplines who share a common interest in cerebral research awards to trainees. vascular biology. By bringing together scientists from diverse back- grounds in basic, translational, and clinical research, the meeting promotes the emergence of common themes across cerebrovascular A1 topics. This will structure strategies for successful therapeutic interven- A novel human immortalized cell‑based blood–brain barrier triple tions in the brain diseases that have strong cerebrovascular compo- co‑culture model for predicting brain permeability of CNS drug nents and/or are underlined by the dysfunction of the BBB. The overall candidates Keita Kitamura1, Kenta Umehara1, Ryo Ito2, Shota Suzuki1, Yoshiyuki goal of CVB 2019 is to serve as a catalyst for exchange of information 2 3 1 1 Yamaura , Takafumi Komori , Naohiko Anzai , Hidetaka Akita , Tomomi on the latest scientifc discoveries related to the bioengineering of the 1 BBB, efcient drug delivery into the brain, and involvement of the BBB Furihata 1Chiba University, Chiba, Japan; 2Ono Pharmaceutical Co., Ltd, Osaka, in the physiology and pathology of the brain, including neuroinfec- 3 tions, neurodegenerative diseases, and addiction research. Consistent Japan; Eisai Co., Ltd., Tokoyo, Japan with this goal, the conference is focused on current and future research Correspondence: Keita Kitamura ‑ ahha4394@chiba‑u.jp surrounding cerebral vascular biology, such as biology and structure Fluids and Barriers of the CNS 2019, 16(Suppl 1):A1 of the neurovascular unit and cell junction proteins, constructing and Objective: In vitro human blood–brain barrier (BBB) models are modeling the BBB, delivery of various types of drugs across the BBB, expected to provide powerful tools for predicting in vivo human brain the role of brain barriers in the pathology of neurological diseases, penetration of central nervous system (CNS) drug candidates, while it and therapeutic strategies to reverse these diseases by targeting the has not yet been fully established a practical model that possesses an brain barriers. Emphasis are being placed on integrative science, trans- optimal BBB phenotype and is readily scalable. To this end, we have lational aspects, and clinical research on disorders involving cerebral developed and characterized a human BBB triple co-culture model © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/ publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Fluids Barriers CNS 2019, 16(Suppl 1):16 Page 2 of 57 comprising brain microvascular endothelial cells (BMEC), astrocyte Conclusion: This novel in vitro device for BBB culture models provides and pericyte by taking advantage of immortalized cell line utility that users with a standardized, reliable and reusable platform to perform allows various experimental approaches. pathology and pharmacology experiments. With advancement of the Methods: A human BBB model was constructed using immortalized electrode layout, TEER automation and surface potential measurement human BMEC (HBMEC/ci18), astrocyte (HASTR/ci35), pericyte (HPBC/ our device is a cutting edge invention in the barrier-chip feld. ci37). The gene expressions were determined by qPCR and immuno- Grant Support: This work was supported by the European Training Net- cytochemistry. The BBB functions were examined by determining work H2020-MSCA-ITN-2015, grant number 675619, and NNE-129. transendothelial electric resistance (TEER), lucifer yellow (LY) permea- bility and P-glycoprotein (P-gp) bi-directional transport. In the perme- Reference ability assay, compounds were quantifed by LC–MS/MS system. 1. Walter FR, Valkai S, Kincses A, Petneházi A, Czeller T, Veszelka S, Ormos Results: HBMEC/ci18 co-cultured with HASTR/ci35 and HBPC/ci37 P, Deli MA, Dér A. A versatile lab‑on‑a‑chip tool for modeling biological showed elevated TEER (2.0-fold), reduced LY permeability (0.7-fold) barriers. Sens Actuators B Chem. 2016; 222:1209–19. and increased P-gp function (1.4-fold) compared with mono-culture. In support of these fndings, expression levels of multiple BBB-specifc A3 genes, including barrier formation, transporters and receptors, were Absolute computed tomography indicators of blood brain barrier increased as well as their typical cellular localization in co-culture permeability and cerebral microperfusion improve long term model. Notably, we performed BBB permeability assays using a set of 9 after carotid stenting in symptomatic patients compounds with known CNS permeability characteristics. Expectedly, Paweł J. Winklewski1, Mariusz Kaszubowski2, Grzegorz Halena1, Agnieszka 1 1 1 1 CNS-positive compounds (memantine, diphenhydramine, proprano- Sabisz , Kamil Chwojnicki , Maciej Piskunowicz , Marta A. Małkiewicz , lol and pyrilamine) displayed high permeability coefcient values (Pe) 1 1 6 Edyta Szurowska , Arkadiusz Szarmach (522 100 to 1398 324 10− cm/s). In contrast, CNS-negative com- 1Medical University of Gdansk, Gdansk, Poland; 2Gdansk Tecchnical pounds± (quinidine,± desloratadine,× rhodamine 123, LY, sodium fuores- 6 University, Gdansk, Poland cein) showed low Pe (21 11 to 161 31 10− cm/s). ± ± × Correspondence: Paweł J. Winklewski ‑ [email protected] Conclusion: We successfully developed a functional and scalable Fluids and Barriers of the CNS 2019, 16(Suppl 1):A3 human BBB model. We hope that such research eforts are likely to open up new possibility of quantitative prediction of human CNS Objectives: Strong interdependence between severity of microcir- action based on in vitro experiment. culation impairment and time-based perfusion parameters has been recently reported. In particular, mean
Recommended publications
  • Manzotti Pepperell New Mind
    Draft: AI & Society “A Faustian Exchange: What is to be human in the era of Ubiquitous Technology The New Mind: Thinking Beyond the Head Riccardo MANZOTTI*, Robert PEPPERELL** *Institute of Consumption, Communication and Behavior IULM University, Via Carlo Bo, 8, 16033 Milano [email protected] **Cardiff School of Art & Design Howard Gardens, Cardiff CF24 0SP, UK [email protected] Abstract Throughout much of the modern period the human mind has been regarded as a property of the brain, and therefore something confined to the inside of the head — a view commonly known as 'internalism'. But recent works in cognitive science, philosophy, and anthropology, as well as certain trends in the development of technology, suggest an emerging view of the mind as a process not confined to the brain but spread through the body and world — an outlook covered by a family of views labeled 'externalism'. In this paper we will suggest there is now sufficient momentum in favour of externalism of various kinds to mark a historical shift in the way the mind is understood. We dub this emerging externalist tendency the 'New Mind'. Key properties of the New Mind will be summarized and some of its implications considered in areas such as art and culture, technology, and the science of consciousness. 1 Introduction For much of recorded human history, in both the European and Asian traditions, the question of how to understand that most ever present yet elusive properties of our existence — that fact that we have conscious minds — has occupied some of our greatest thinkers and provoked endless controversy.
    [Show full text]
  • The Speculative Neuroscience of the Future Human Brain
    Humanities 2013, 2, 209–252; doi:10.3390/h2020209 OPEN ACCESS humanities ISSN 2076-0787 www.mdpi.com/journal/humanities Article The Speculative Neuroscience of the Future Human Brain Robert A. Dielenberg Freelance Neuroscientist, 15 Parry Street, Cooks Hill, NSW, 2300, Australia; E-Mail: [email protected]; Tel.: +61-423-057-977 Received: 3 March 2013; in revised form: 23 April 2013 / Accepted: 27 April 2013 / Published: 21 May 2013 Abstract: The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), deep brain stimulation (DBS) and invasive brain mind interface (BMI) technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us? Keywords: hybridization; BMI; tDCS; TMS; DBS; optogenetics; nootropic; radiotelepathy Introduction Newtonian systems aside, futurecasting is a risky enterprise at the best of times.
    [Show full text]
  • Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia
    Published OnlineFirst September 20, 2013; DOI: 10.1158/2159-8290.CD-13-0350 RESEARCH ARTICLE Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia Tea Pemovska 1 , Mika Kontro 2 , Bhagwan Yadav 1 , Henrik Edgren 1 , Samuli Eldfors1 , Agnieszka Szwajda 1 , Henrikki Almusa 1 , Maxim M. Bespalov 1 , Pekka Ellonen 1 , Erkki Elonen 2 , Bjørn T. Gjertsen5 , 6 , Riikka Karjalainen 1 , Evgeny Kulesskiy 1 , Sonja Lagström 1 , Anna Lehto 1 , Maija Lepistö1 , Tuija Lundán 3 , Muntasir Mamun Majumder 1 , Jesus M. Lopez Marti 1 , Pirkko Mattila 1 , Astrid Murumägi 1 , Satu Mustjoki 2 , Aino Palva 1 , Alun Parsons 1 , Tero Pirttinen 4 , Maria E. Rämet 4 , Minna Suvela 1 , Laura Turunen 1 , Imre Västrik 1 , Maija Wolf 1 , Jonathan Knowles 1 , Tero Aittokallio 1 , Caroline A. Heckman 1 , Kimmo Porkka 2 , Olli Kallioniemi 1 , and Krister Wennerberg 1 ABSTRACT We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profi ling and ex vivo drug sensitivity and resistance testing (DSRT) of patients’ cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered fi ve major taxonomic drug-response sub- types based on DSRT profi les, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3 -ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses.
    [Show full text]
  • Mirna‑26A‑5P and Mir‑26B‑5P Inhibit the Proliferation of Bladder Cancer Cells by Regulating PDCD10
    ONCOLOGY REPORTS 40: 3523-3532, 2018 miRNA‑26a‑5p and miR‑26b‑5p inhibit the proliferation of bladder cancer cells by regulating PDCD10 KE WU1*, XING-YU MU1*, JUN-TAO JIANG1, MING-YUE TAN1, REN-JIE WANG1, WEN-JIE ZHOU2, XIANG WANG1, YIN-YAN HE3, MING-QING LI2 and ZHI-HONG LIU1 1Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080; 2Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011; 3Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China Received October 11, 2017; Accepted September 4, 2018 DOI: 10.3892/or.2018.6734 Abstract. MicroRNA (miR)-26a-5p and miR-26b-5p consis- and miR-26b-5p were pivotal regulators in BC progression tently play an antitumor role in many types of cancers, but the by targeting the proliferation-related protein, PDCD10. The underlying mechanism remains unclear in bladder cancer (BC). miR-26-5p/PDCD10 interaction may provide important In the present study, we found that, in BC tissues, the levels of insight into the pathway of BC progression and present novel miR-26a-5p and miR-26b-5p were lower than in paired normal opportunities for future diagnosis and treatment strategies, tissues. The upregulation of miR‑26‑5p significantly inhibited especially for patients with high levels of PDCD10. the proliferation of BC cell lines (T24 and 5637). Bioinformatics analysis indicated that Programmed Cell Death 10 (PDCD10) Introduction was the downstream target gene of miR-26a-5p/miR-26b-5p, and this was ascertained by western blotting and quantitative Bladder cancer (BC) is one of the most important urinary real-time reverse transcription PCR (RT-qPCR).
    [Show full text]
  • D1.3 Title: Roadmap
    BNCI Horizon 2020 FP7-ICT-2013-10 609593 Nov 2013–Apr 2015 Deliverable: D1.3 Title: Roadmap Work package: WP1 Due: M9 Type: PU1 ☐ PP2 ☐ RE3 ☐ CO4 Main author: Clemens Brunner (TUG) Other authors: Gernot R. Müller-Putz (TUG) Mariska Van Steensel (UMCU) Begonya Otal (BDIGITAL) Floriana Pichiorri (FSL) Francesca Schettini (FSL) Ruben Real (UNIWUE) Maria Laura Blefari (EPFL) Johannes Höhne (TUB) Mannes Poel (UT) Abstract: This deliverable describes the current state of the roadmap document. Keywords: Roadmap 1 Public 2 Restricted to other program participants 3 Restricted to a group specified by the consortium 4 Confidential, only for members of the consortium 1 Table of Contents 1Introduction .............................................................................................................................. 3 2The Project ............................................................................................................................... 3 3The Consortium ........................................................................................................................ 4 4What is a BCI? ......................................................................................................................... 4 5Who can use a BCI? ................................................................................................................. 6 6Future opportunities and synergies ........................................................................................... 8 7Executive summary ...............................................................................................................
    [Show full text]
  • Cerebral Cavernous Malformations: from Genes to Proteins to Disease
    See the corresponding editorial in this issue, pp 119–121. J Neurosurg 116:122–132, 2012 Cerebral cavernous malformations: from genes to proteins to disease Clinical article DANIEL D. CAVALCANTI, M.D., M. YASHAR S. KALANI, M.D., PH.D., NIKOLAY L. MARTIROSYAN, M.D., JUSTIN EALES, B.S., ROBERT F. SPETZLER, M.D., AND MARK C. PREUL, M.D. Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona Over the past half century molecular biology has led to great advances in our understanding of angio- and vas- culogenesis and in the treatment of malformations resulting from these processes gone awry. Given their sporadic and familial distribution, their developmental and pathological link to capillary telangiectasias, and their observed chromosomal abnormalities, cerebral cavernous malformations (CCMs) are regarded as akin to cancerous growths. Although the exact pathological mechanisms involved in the formation of CCMs are still not well understood, the identification of 3 genetic loci has begun to shed light on key developmental pathways involved in CCM pathogen- esis. Cavernous malformations can occur sporadically or in an autosomal dominant fashion. Familial forms of CCMs have been attributed to mutations at 3 different loci implicated in regulating important processes such as proliferation and differentiation of angiogenic precursors and members of the apoptotic machinery. These processes are important for the generation, maintenance, and pruning of every vessel in the body. In this review the authors highlight the lat- est discoveries pertaining to the molecular genetics of CCMs, highlighting potential new therapeutic targets for the treatment of these lesions.
    [Show full text]
  • STRIPAK Complexes in Cell Signaling and Cancer
    Oncogene (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc REVIEW STRIPAK complexes in cell signaling and cancer Z Shi1,2, S Jiao1 and Z Zhou1,3 Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de) phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer. Oncogene advance online publication, 15 February 2016; doi:10.1038/onc.2016.9 INTRODUCTION in the central nervous system and STRN4 is mostly abundant in Recent proteomic studies identified a group of novel multi- the brain and lung, whereas STRN3 is ubiquitously expressed in 5–9 component complexes named striatin (STRN)-interacting phos- almost all tissues. STRNs share a
    [Show full text]
  • Program Book
    2 16 HBM GENEVA 22ND ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING PROGRAM June 26-30, 2016 Palexpo Exhibition and Congress Centre | Geneva, Switzerland Simultaneous Multi-Slice Accelerate advanced neuro applications for clinical routine siemens.com/sms Simultaneous Multi-Slice is a paradigm shift in MRI Simulataneous Multi-Slice helps you to: acquisition – helping to drastically cut neuro DWI 1 scan times, and improving temporal resolution for ◾ reduce imaging time for diffusion MRI by up to 68% BOLD fMRI significantly. ◾ bring advanced DTI and BOLD into clinical routine ◾ push the limits in brain imaging research with 1 MAGNETOM Prisma, Head/Neck 64 acceleration factors up to 81 2 3654_MR_Ads_SMS_7,5x10_Zoll_DD.indd 1 24.03.16 09:45 WELCOME We would like to personally welcome each of you to the 22nd Annual Meeting TABLE OF CONTENTS of the Organization for Human Brain Mapping! The world of neuroimaging technology is more exciting today than ever before, and we’ll continue our Welcome Remarks . .3 tradition of bringing inspiration to you through the exceptional scientific sessions, General Information ..................6 poster presentations and networking forums that ensure you remain at the Registration, Exhibit Hours, Social Events, cutting edge. Speaker Ready Room, Hackathon Room, Evaluations, Mobile App, CME Credits, etc. Here is but a glimpse of what you can expect and what we hope to achieve over Daily Schedule ......................10 the next few days. Sunday, June 26: • Talairach Lecture presenter Daniel Wolpert, Univ. Cambridge UK, who Educational Courses Full Day:........10 will share his work on how humans learn to make skilled movements MR Diffusion Imaging: From the Basics covering probabilistic models of learning, the role and content in activating to Advanced Applications ............10 motor memories and the intimate interaction between decision making and Anatomy and Its Impact on Structural and Functional Imaging ..................11 sensorimotor control.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptGenet Med Author Manuscript. Author manuscript; Author Manuscript available in PMC 2016 March 01. Published in final edited form as: Genet Med. 2015 March ; 17(3): 188–196. doi:10.1038/gim.2014.97. EXCEPTIONAL AGGRESSIVENESS OF CEREBRAL CAVERNOUS MALFORMATION DISEASE ASSOCIATED WITH PDCD10 MUTATIONS Robert Shenkar, PhD#1, Changbin Shi, MD, PhD#1, Tania Rebeiz, MD2, Rebecca A. Stockton, PhD3, David A. McDonald, PhD4,5, Abdul Ghani Mikati, MD1, Lingjiao Zhang, MS1, Cecilia Austin, BS1, Amy L. Akers, PhD6, Carol J. Gallione, BA4, Autumn Rorrer, BA4, Murat Gunel, MD7, Wang Min, PhD8, Jorge Marcondes De Souza, MD, PhD9, Connie Lee, PsyD6, Douglas A. Marchuk, PhD#4, and Issam A. Awad, MD, MSc#1,2 1Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL 60637, USA 2Department of Neurology, The University of Chicago Medicine, Chicago, IL 60637, USA 3Department of Pediatrics, University of California at Los Angeles, Torrance, CA 90502, USA 4Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA 5Center for Science, Math and Technology Education, North Carolina Central University, Durham, NC 27707, USA 6Angioma Alliance, Norfolk, VA 23510, USA 7Departments of Neurosurgery and Neurobiology, Yale University, New Haven, CT 06520, USA 8Department of Pathology, Yale University, New Haven, CT 06520, USA 9Department of Neurosurgery, School of Medicine, Federal University of Rio De Janeiro, Rio de Janeiro, Brazil # These authors contributed equally to this work. Abstract Purpose—The phenotypic manifestations of cerebral cavernous malformation (CCM) disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase (ROCK) mediated hyperpermeability, a potential therapeutic target, has not been established.
    [Show full text]
  • The Hard Problem and the Measurement Problem: a No-Go Theorem and Potential Consequences
    The hard problem and the measurement problem: a no-go theorem and potential consequences Igor Salom Institute of Physics, Belgrade University, Pregrevica 118, Zemun, Serbia The \measurement problem" of quantum mechanics, and the \hard problem" of cognitive science are the most profound open problems of the two research fields, and certainly among the deepest of all unsettled conundrums in contemporary science in general. Occasionally, scientists from both fields have suggested some sort of interconnectedness of the two problems. Here we revisit the main motives behind such expectations and try to put them on more formal grounds. We argue not only that such a relation exists, but that it also bears strong implications both for the interpretations of quantum mechanics and for our understanding of consciousness. The paper consists of three parts. In the first part, we formulate a \no-go-theorem" stating that a brain, functioning solely on the principles of classical physics, cannot have any greater ability to induce subjective experience than a process of writing (printing) a certain sequence of digits. The goal is to show, with an attempt to mathematical rigor, why the physicalist standpoint based on classical physics is not likely to ever explain the phenomenon of consciousness { justifying the tendency to look beyond the physics of the 19th century. In the second part, we aim to establish a clear relation, with a sort of correspondence mapping, between attitudes towards the hard problem and interpretations of quantum mechanics. Then we discuss these connections in the light of the no-go theorem, pointing out that the existence of subjective experience might differentiate between otherwise experimentally indistinguishable interpretations.
    [Show full text]
  • Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and B-Catenin– Independent Targets by Proteomics
    Published OnlineFirst June 3, 2019; DOI: 10.1158/1541-7786.MCR-18-1154 Cancer "-omics" Molecular Cancer Research Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and b-Catenin– Independent Targets by Proteomics Olesja Popow1,2,3,Joao~ A. Paulo2, Michael H. Tatham4, Melanie S. Volk3, Alejandro Rojas-Fernandez5, Nicolas Loyer3, Ian P. Newton3, Jens Januschke3, Kevin M. Haigis1,6, and Inke Nathke€ 3 Abstract Adenomatous Polyposis Coli (APC) is the most frequently tion between endogenous MINK1 and APC and further mutated gene in colorectal cancer. APC negatively regulates confirmed the negative, and b-catenin–independent, regu- the Wnt signaling pathway by promoting the degradation of lation of MINK1 by APC. Increased Mink1/Msn levels were b-catenin, but the extent to which APC exerts Wnt/b-cate- also observed in mouse intestinal tissue and Drosophila nin–independent tumor-suppressive activity is unclear. To follicular cells expressing mutant Apc/APC when compared identify interaction partners and b-catenin–independent with wild-type tissue/cells. Collectively, our results highlight targets of endogenous, full-length APC, we applied label- the extent and importance of Wnt-independent APC func- free and multiplexed tandem mass tag-based mass spec- tions in epithelial biology and disease. trometry. Affinity enrichment-mass spectrometry identified more than 150 previously unidentified APC interaction Implications: The tumor-suppressive function of APC, the partners. Moreover, our global proteomic analysis revealed most frequently mutated gene in colorectal cancer, is mainly that roughly half of the protein expression changes that attributed to its role in b-catenin/Wnt signaling. Our study occur in response to APC loss are independent of b-catenin.
    [Show full text]
  • Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation
    International Journal of Molecular Sciences Review Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation 1,2, 2, 3 2 3 Shu Wei y, Ye Li y, Sean P. Polster , Christopher R. Weber , Issam A. Awad and Le Shen 2,3,* 1 Graduate Program in Public Health and Preventive Medicine, Wuhan University of Science and Technology, Wuhan 430081, China; [email protected] 2 Department of Pathology, The University of Chicago, Chicago, IL 60615, USA; [email protected] (Y.L.); [email protected] (C.R.W.) 3 Section of Neurosurgery, Department of Surgery, The University of Chicago, Chicago, IL 60615, USA; [email protected] (S.P.P.); [email protected] (I.A.A.) * Correspondence: [email protected] These authors contributed equally. y Received: 10 December 2019; Accepted: 15 January 2020; Published: 20 January 2020 Abstract: Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review, we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of endothelium and epithelium, and their contribution to CCM and potentially other diseases. Keywords: cerebral cavernous malformation; endothelial barrier; epithelial barrier; Rho; ROCK; MEKK3 1. Introduction One of the key functions of endothelial and epithelial cells is to create a barrier that separates different tissue compartments, and in the case of skin, epithelial cells separate body and outer environment.
    [Show full text]