36% NICKEL-IRON ALLOY for Low Temperature Service

Total Page:16

File Type:pdf, Size:1020Kb

36% NICKEL-IRON ALLOY for Low Temperature Service 36% NICKEL-IRON ALLOY For Low Temperature Service Introduction Tensile Requirements 36 per cent nickel-iron alloy possesses a useful The following tensile properties are specified in combination of low thermal expansion, moder- the ASTM standard: ately high strength and good toughness at tem- Tensile Strength .................... 65,000-80,000 psi peratures down to that of liquid helium, -452 ºF .................... 448-552 N/mm2 (-269 ºC). These properties coupled with good Yield Strength weldability and desirable physical properties (0.2% Offset), min ............ 35,000 psi make this alloy attractive for many cryogenic ............ 241 N/ mm2 applications. A modified form of 36 per cent Elongation nickel-iron alloy known as INVAR* M 63 has (2 in. or 50 mm), min, % .......... 30.0 been used for LNG membrane tanks. It is avail- able as plate, strip, sheet, pipe, tubing, bars, billets, forgings and wire. Heat Treatment Specifications Annealing–ASTM A 658 ASTM Designation A 658 covers 36 per cent The following procedure for heat treatment is nickel-iron alloy plates intended primarily for recommended in the above mentioned standard: welded pressure vessels. The material is sup- Heat to 1450 ± 50 ºF (790 ± 28 ºC); hold at plied in the annealed condition to meet the re- this temperature ½ hour per inch (25 mm) of quirements of the ASME Boiler and Pressure thickness, but not less than 15 minutes; cool Vessel Code. The maximum allowable stress in still air. Typical hardnesses after several value in tension for the ASME counterpart, SA- alternate annealing treatments are shown in 658, given in Section VIII, Division 1 of the Table I. ASME Code is 16,200 psi (112 N/mm2 ). A proposed ASTM specification for 36 per cent nickel-iron alloy piping is under development. TABLE I Chemical Composition Annealing of 36 Per Cent Nickel-Iron Alloy The chemical composition as given in the ASTM standard is as follows: Temperature Cooling Hardness ºF ºC Medium Rockwell B Element Composition, % 1200 650 Air 87-88 1500 815 Air 77-78 Carbon ............................... 0.10 max 1800 980 Air 70-71 1900 1040 Air 66-68 Manganese ......................... 0.50 max Phosphorus ........................ 0.025 max Sulfur ................................. 0.025 max Silicon ................................ 0.35 max Nickel ................................. 35.5-36.5 Stability Anneal Iron ..................................... Balance The following three-stage heat treatment was developed1 to achieve the optimum combina- Notes: Phosphorus and sulfur each 0.010 max if tion of low expansion coefficient and high specified. Chromium, molybdenum and dimensional stability: cobalt each 0.50 max but not intention- 1. Heat to 1525 ºF (830 ºC), hold ½ hour per ally added. inch (25 mm) of thickness, water quench. *Trademark of Société Creusot-Loire (METALIMPHY), France. 1 2. Reheat to 600 ºF (315 ºC), hold 1 hour per Mechanical Properties inch (25 mm) of thickness, air cool. Tensile Properties and Hardness 3. Reheat to 205 ºF (96 ºC), hold 48 hours, Typical room temperature mechanical prop- air cool. erties of annealed and cold worked 36 per cent nickel-iron alloy are shown in Table II.2 The effect of temperature on the tensile properties of plate and forged bars in the annealed condition are shown in Figures 1 and 2. 36 per cent nickel-iron alloy is not notch-sen- sitive: the ratio of notched tensile strength to unnotched tensile strength is on the order of 1.10 at room temperature as well as at -320 ºF (-196 ºC).3 Figure 1. Effect of temperature on the typical tensile properties of Figure 2. Effect of temperature on the tensile properties of forged annealed 36% Ni-Fe alloy. 36% Ni-Fe alloy in the annealed condition. TABLE II Typical Mechanical Properties of 36 Per Cent Nickel-Iron Alloy Cold Cold Cold Worked Worked Worked Annealed 15% 25% 30% Tensile Strength, psi 71,400 93,000 100,000 106,000 N/mm2 (492) (641) (690) (731) Yield Strength (0.2% Offset), psi 40,000 65,000 89,500 95,000 N / mm2 (276) (448) (617) (655) Elongation (2 in. or 50 mm), % 41 14 9 8 Reduction of Area, % 72 64 62 59 Brinell Hardness 131 187 207 217 2 Stability of Properties on Exposure strength to the base plate have been achieved to Low Temperatures for Long Times using appropriate filler metals such as modified The mechanical properties of 36 per cent 36 per cent nickel-iron filler metal, INCONEL* nickel-iron alloy are not affected by exposure Filler Metal 92 and HASTELLOY** alloy W. to low temperatures for long periods of time. The 36 per cent nickel-iron alloy can be readily Exposure for times up to several thousand welded. However, where matching thermal and hours at –320 ºF (–196 ºC) with and without mechanical properties are required, either TIG applied stress have not altered its mechanical (tungsten inert gas) or the short-circuiting modi- properties, even in the case of notch-sensi- fication of MIG (metal inert gas) welding pro- tivity. cesses should be used. The shielding gas nor- mally used is argon, although helium-argon Impact Properties mixtures may be used. In general, welding pro- The effect of temperature on the Charpy im- cedures and precautions are not much more pact values of annealed and cold worked 36 stringent than those exercised for high quality welds in the AISI 300 series stainless steels. A per cent nickel-iron alloy is shown in Figure 3. commercially available filler metal of modified Fatigue Properties 36 per cent nickel-iron alloy closely matching 8 the base metal in expansion properties has The room temperature fatigue strength at 10 4 cycles of polished rotating-beam R. R. Moore been developed. This composition in per cent specimens of annealed 36 per cent nickel-iron is listed below: alloy is approximately 40,000 psi (276 N/mm2). Figure 4 shows axial fatigue properties of cold rolled 0.040 inch (1.0 mm) thick sheet at room Modified 36 per cent Nickel- temperature and at –100 ºF (–73 ºC). Typical Iron Alloy Filler Metal fatigue endurance limits at 107 cycles for sheet specimens tested in alternating plane Nickel ....................................................... 36.0 bending at constant strain amplitude are Carbon ...................................................... 0.1 27,000-31,000 psi (186-214 N/mm2 ) at room Manganese ............................................... 3.0 temperature and 39,000-41,000 psi (269-283 Silicon ...................................................... 0.1 max N/mm2 ) at –320 ºF (–196 ºC).3 Titanium .................................................... 1.0 Sulfur* ...................................................... .01 max Phosphorus* ............................................. .02 max Welding Iron ........................................................... Bal For pressure vessel construction, 36 per cent * Total percentage of P plus S not to exceed 0.025%. nickel-iron alloy falls into Group P-10g, Table Q-11.1, Section IX of the ASME Code governing welding procedure qualification. The ASME ten- * Registered trademark of The International Nickel Company, Inc. sile requirement for the weld metal is 65,000 psi ** Registered trademark of Cabot Corporation. (448 N/mm2 ) minimum. Welds of matching Figure 3. Effect of test temperature on Charpy Impact Values for Figure 4. Axial fatigue characteristics of smooth 0.040 in. (1.0 mm) 36% Ni-Fe alloy. 36% Ni-Fe alloy sheet at 80 ºF (27 ºC) and -100 ºF (-73 ºC). 3 Typical mechanical properties of TIG welds at The alloy is also subject to deep pitting on three test temperatures are shown in Table boldly exposed surfaces in flowing sea water at 111.5 The data reported were determined on ¼ two feet per second (0.6 m/sec). (Table V). inch (6.4 mm) plate but similar properties are achieved readily in sheet thickness welds and in heavier plate weldments. Welding of 36 per cent Physical Properties nickel-iron alloy pipe using the inert gas The thermal expansion properties in the an- processes is covered in NASA Specification nealed condition are shown in Table VI.7 Figure 75M09470. 5 illustrates the thermal contraction of annealed 36 per cent nickel-iron alloy is readily resistance and cold worked 36 per cent nickel-iron alloy welded. Welding variables are essentially the same between room temperatures and –423 ºF as those used for annealed austenitic stainless (–253 ºC). Cold work usually reduces thermal steels. Spot welds meeting all requirements of expansion while composition variations usually MIL-W-6858 have been made in matching and raise expansion values. dissimilar sheet thickness combinations from The effect of temperature upon the modulus of 1/16 to ¼ inch (1.6-6.4 mm).6 elasticity, modulus of rigidity and thermal conductivity of 36 per cent nickel-iron alloy are Where thermal expansion considerations permit, shown respectively in Figures 6, 7 and 8. 36 per cent nickel-iron alloy can be joined readily to itself as well to a variety of iron and nickel-base alloys using such general purpose filler metals as INCONEL Filler Metal 92 and HASTELLOY alloy W. Typical properties are shown in Table IV.5 Corrosion General corrosion rates of 36 per cent nickel-iron alloy are below one mil per year (.025 mm/yr) for both industrial and marine atmospheric ex- posures. (Table V). The 36 per cent nickel-iron alloy has shown some susceptibility to stress- corrosion cracking in tests when exposed to sea water or marine atmospheres. Data obtained from multiple U-bend specimen exposures are summarized in Table V. Rapid cracking has been reported in acid chloride environments of pH 2 and at elevated temperatures.
Recommended publications
  • Invar, Established a New Standard in the Way Precise Surveying Measurements Were Made, Both in Reliability and Accuracy
    I N VA R The Breakthrough for a Low Expansion Alloy he discovery of the low expansion alloy, Invar, established a new standard in the way precise surveying measurements were made, both in reliability and accuracy. It became the first successful attempt to produce a metal alloy exhibiting a nearly zero coefficient of thermal expansion. In 1889, James Riley of Glasgow, Scotland, brought before the Iron and Steel Institute his investigations into the making of an alloy through a series of tests which combined up to 49 percent nickel with iron. Seven years later, in 1896, Charles Edouard Guillaume, a Swiss-born metallurgist and employee with the International Bureau of Weights and Measures near Paris, began looking specifically for an alloy to be used for surveyors’ wires that would not noticeably change when exposed to temperature variations. While experimenting with nickel contents between 30 and 60 percent, Guillaume discovered the coefficient of expansion at room temperature was lowest when mixing a nickel content of 36 percent with 64 percent iron. Since his new alloy exhibited the least amount of thermal expansion, and because Guillaume considered it invariable, it quickly became known as “Invar”. In 1920, Guillaume was awarded the Nobel Prize in Physics for his discovery of Invar >> By Jerry Penry, PS Displayed with permission • The American Surveyor • Vol. 9 No. 10 • Copyright 2012 Cheves Media • www.Amerisurv.com The Sokkia BIS30 3-meter Invar bar code leveling staff in use during a high precision survey. Image courtesy of Sokkia Corporation. Displayed with permission • The American Surveyor • Vol. 9 No.
    [Show full text]
  • National Advisory Committee for Aeronautics
    https://ntrs.nasa.gov/search.jsp?R=19930083526 2020-06-17T20:21:50+00:00Z GOVT. DOC. 1JlJf;, tEcH NFSS NICA,1. ~NO lil? , oor---------------------------------------------------~~~------~ L{) r­ N NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 2758 / WEAR AND SLIDING F RICTION PROPERTIES OF NICKEL ALLOYS SUITED FOR CAGES OF HIGH-TEMPERATURE R OLLING- CONTACT BEARINGS I - ALLOYS RETAIN ING MECHANICAL PROPER TIES TO 600 0 F By R obert L. Johnson, Max A. Swikert and Edmond E. Bisson Lewis Flight Propulsion Laboratory Cleveland, Ohio Washington August 1952 lY NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 2758 WEAR AND SLIDING FRICTION PROPERTIES OF NICKEL ALLOYS SUITED FOR CAGES OF HIGH-TEMPERATURE ROLLING-CONTACT BEARINGS I - ALLOYS REI'AINING MECHANICAL PROPERTIES TO 6000 F \. By Robert L. Johnson, Max A. SWikert, and Edmond E. Bisson SUMMARY Wear and sliding friction properties of a number of nickel alloys operating against hardened SAE 52100 steel were stUdied. These alloys include "L" nickel, wrought monel, cast monel, cast modified "H" monel, cast "s" monel, Invar, Ni-Resist 3, and Nichrome V. Some of the alloys studied may be useful as possible cage materials for high-temperature, high-speed bearings for aircraft turbines or for bearings to operate in corrosive media . Desirable operating properties of all the materials could be associated with the development on the rider surface of a naturally formed film of nickel oxide . On the basis of wear and friction proper­ ties, Ni-Resist 3, modified "H" monel, and Invar were the best materials studied in this investigation although they did not perform as well as nod!.llar iron.
    [Show full text]
  • Special-Purpose Nickel Alloys
    © 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Special-Purpose Nickel Alloys NICKEL-BASE ALLOYS have a number of meet special needs. The grades considered in ganese, and copper, a 0.005% limit on iron, and unique properties, or combinations of proper- this section include the following: a 0.02% limit on carbon. This high purity re- ties, that allow them to be used in a variety of sults in lower coefficient of expansion, electri- specialized applications. For example, the high • Nickel 200 (99.6% Ni, 0.04% C) cal resistivity, Curie temperature, and greater resistivity (resistance to flow of electricity) and • Nickel 201 (99.6% Ni, 0.02% C maximum) ductility than those of other grades of nickel heat resistance of nickel-chromium alloys lead • Nickel 205 (99.6% Ni, 0.04% C, 0.04% Mg) and makes Nickel 270 especially useful for to their use as electric resistance heating ele- • Nickel 233 (see composition in table that fol- some electronics applications such as compo- ments. The soft magnetic properties of lows) nents of hydrogen thyratrons and as a substrate nickel-iron alloys are employed in electronic • Nickel 270 (99.97% Ni) for precious metal cladding. devices and for electromagnetic shielding of computers and communication equipment. Iron- Composition limits and property data on sev- eral of these grades can be found in the article nickel alloys have low expansion characteris- Resistance Heating Alloys tics as a result of a balance between thermal ex- “Wrought Corrosion-Resistant Nickels and pansion and magnetostrictive changes with Nickel Alloys” in this Handbook.
    [Show full text]
  • A Simple Theory of the Invar Effect in Iron-Nickel Alloys
    1 A simple theory of the Invar effect in iron-nickel alloys François Liot1 & Christopher A. Hooley2 1Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden; 2Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, U.K. Certain alloys of iron and nickel (so-called ‘Invar’ alloys) exhibit almost no thermal expansion over a wide range of temperature1–3. It is clear that this is the result of an anomalous contraction upon heating which counteracts the normal thermal expansion arising from the anharmonicity of lattice vibrations. This anomalous contraction seems to be related to the alloys’ magnetic properties, since the effect vanishes at a temperature close to the Curie temperature. However, despite many years of intensive research, a widely accepted microscopic theory of the Invar effect in face-centered-cubic Fe-Ni alloys is still lacking. Here we present a simple theory of the Invar effect in these alloys based on Ising magnetism, ab initio total energy calculations, and the Debye-Grüneisen model4. We show that this theory accurately reproduces several well known properties of these materials, including Guillaume’s famous plot1 of the thermal expansion coefficient as a function of the concentration of nickel. Within the same framework, we are able to account in a straightforward way for experimentally observed deviations from Vegard’s law2, 3, 5, 6. Our approach supports the idea that the lattice constant is governed by a few parameters, including the fraction of iron-iron nearest-neighbour pairs.
    [Show full text]
  • BSTJ 27: 3. July 1948: the Evolution of the Quartz Crystal Clock
    The Evolution of the Quartz Crystal Clock* By WARREN A. MARRISON SOME of the earliest documents in human history relate to man's interest in timekeeping. This interest arose partly because of his curiosity about the visible world around him, and partly because the art of time measure- ment became an increasingly important part of living as the need for cooper- ation between the members of expanding groups increased. There are still in existence devices believed to have been made by the Egyptians six thousand years ago for the purpose of telling time from the stars, and there is good reason to believe that they were in quite general use by the better educated people of that period. 1 Since that period there has been a continuous use and improvement of timekeeping methods and devices, following sometimes quite independent lines, but developing through a long series of new ideas and refinements into the very precise means at our disposal today. The art of timekeeping and time measurement is of very great value, both from its direct social use in permitting time tables and schedules to be made, and in its relation to other arts and the sciences in which the measurement of rate and duration assume ever increasing importance. The early history of timekeeping was concerned almost entirely with the first of these and for many centuries the chief purpose of timekeeping devices was to provide means for the approximate subdivision of the day, particularly of the day- light hours. The most obvious events marking the passage of time were the rising and setting of the sun and its continuous apparent motion from east to west through the sky.
    [Show full text]
  • Michelson's Nobel Lecture
    NOBEL LECTURES IN PHYSICS 1901-1921 NOBEL LECTURES INCLUDING PRESENTATION SPEECHES AND LAUREATES BIOGRAPHIES PHYSICS CHEMISTRY PHYSIOLOGY OR MEDICINE LITERATURE PEACE ECONOMIC SCIENCES NOBEL LECTURES INCLUDING PRESENTATION SPEECHES AND LAUREATES' BIOGRAPHIES PHYSICS 1901-1921 b World Scientific b Singapore lNew Jersey · London lHong Kong Published for the Nobel Foundation in 1998 by World Scientific Publishing Co. Pte. Ltd. P 0 Box 128, Farrer Road, Singapore 912805 USA office: Suite lB, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE NOBEL LECTURES IN PHYSICS (1901-1921) All rights reserved. ISBN 981-02-3401-5 Printed in Singapore. Foreword Since 1901 the Nobel Foundation has published annually , Les Prix Nobel with reports from the Nobel award ceremonies in Stockholm and Oslo as well as the biographies and Nobel lectures of the Laureates. In order to make the lectures available to people with special interests in the different prize fields the Foundation gave Elsevier Publishing Company the right to publish in English the lectures for 1901-1970, which were published in 1964-1972 through the following volumes: Physics 1901-1970 4 vols. Chemistry 1901-1970 4 vols. Physiology or Medicine 1901-1970 4 vols. Literature 1901-1967 1 vol. Peace 1901-1970 3 vols. Since the Elsevier series has been out of print for many years the Nobel Foundation has given World Scientific Publishing Company the right to publish these Nobel lectures, biographies and presentation speeches. The Nobel Foundation is very pleased that the intellectual and spiritual message to the world laid down in the laureates’ lectures will, thanks to the efforts of World Scientific, reach new readers all over the world.
    [Show full text]
  • Stability of Materials for Use in Space-Based Interferometric Missions
    STABILITY OF MATERIALS FOR USE IN SPACE-BASED INTERFEROMETRIC MISSIONS By ALIX PRESTON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 °c 2010 Alix Preston 2 This is dedicated to all who were told they would fail, only to prove them wrong 3 ACKNOWLEDGMENTS Much of this work would not have been made possible if it were not for the help of many graduate and undergraduate students, faculty, and sta®. I would like to thank Ira Thorpe, Rachel Cruz, Vinzenz Vand, and Josep Sanjuan for their help and thoughtful discussions that were instrumental in understanding the nuances of my research. I would also like to thank Gabriel Boothe, Aaron Spector, Benjamin Balaban, Darsa Donelon, Kendall Ackley, and Scott Rager for their dedication and persistence to getting the job done. A special thanks is due for the physics machine shop, especially Marc Link and Bill Malphurs, who spent many hours on the countless projects I needed. Lastly, I would like to thank my advisor, Dr. Guido Mueller, who put up with me, guided me, and supported me in my research. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................. 4 LIST OF TABLES ..................................... 9 LIST OF FIGURES .................................... 10 KEY TO ABBREVIATIONS ............................... 17 KEY TO SYMBOLS .................................... 19 ABSTRACT ........................................ 20 CHAPTER 1 INTRODUCTION .................................. 22 1.1 Space-Based Missions .............................. 23 1.2 GRACE ..................................... 23 1.3 GRACE Follow-On ............................... 25 1.4 LISA ....................................... 26 1.4.1 Introduction ............................... 26 1.4.2 Sources .................................. 27 1.4.2.1 Cosmological background sources .............
    [Show full text]
  • The Cambridge Pendulum Apparatus
    The Cambridge Pendulum Apparatus J. E. Jackson “A golden bud set on a leafless stem leads to my result”-E. Bramah, Kai Lung Unrolls his Mat. Summary Downloaded from https://academic.oup.com/gji/article/4/Supplement_1/375/650518 by guest on 24 September 2021 The three-pendulum method, developed and used by Lenox- Conyngham, was superseded in 1930, on the arrival of a new vacuum box for swinging two pendulums. With three invar pendulums taken over from the earlier apparatus and three new ones acquired in 1931, this box is the centrepiece of the apparatus which has been in use up to the present day, for geophysical investigations and for establishing gravity reference stations in many parts of the world. This article describes briefly the apparatus and the various modifications of pro- cedure and changes of auxiliary gear that have taken place in the past 30 years. A list of the work done with the apparatus is given. I. Introduction For two and a half centuries, geodesists have been studying the Figure of the Earth. Methods of investigation in this field are divisible into two classes, the geometrical and the physical. In the nineteenth century, surveyors with their triangulation and astronomical observations, helped by the utility of their work as a contribution to map-making, got away to a good geometrical start and produced a great many “Figures of the Earth”, each one of them closely fitting a small part of the geoid surface. Geodesy, in the modern sense of the word, stems from Newton’s law of gravitation.
    [Show full text]
  • Charles-É. Guillaume
    C HARLES - É . G UILLAUME Invar and elinvar Nobel Lecture, December 11, 1920 The anomaly of nickel steels Discovery of the anomaly - In 1889 the General Conference on Weights and Measures met at Sèvres, the seat of the International Bureau. It performed the first great deed dictated by the motto inscribed in the pediment of the splendid edifice that is the metric system : "A tous les temps, a tous les peuples" (For all times, to all peoples); and this deed consisted in the approval and distribution, among the governments of the states supporting the Metre Con- vention, of prototype standards of hitherto unknown precision intended to propagate the metric unit throughout the whole world. These prototypes were indeed noteworthy. They were made of a plati- num-iridium alloy developed by Henri Sainte-Claire-Deville which com- bined all the qualities of hardness, permanence, and resistance to chemical agents which rendered it suitable for making into standards required to last for centuries. Yet their high price excluded them from the ordinary field of science; at that time a single metre actually cost 7,000 crowns - and how much more today! A less costly answer had to be sought since between these precious proto- types and standards affording only uncertain guarantees there was a gap which nothing could fill. I first examined this problem in 1891 and soon discovered the really ex- cellent properties of pure nickel and still today this is the metal used to make a non-oxidizable standard, unaffected by the passage of time, rigid and of average expansibility.
    [Show full text]
  • 36% NICKEL-IRON ALLOY for Low Temperature Service
    36% NICKEL-IRON ALLOY A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS NO 410 Distributed by Produced by NICKEL INCO INSTITUTE 36% NICKEL-IRON ALLOY A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS NO 410 Originally, this handbook was published in 1976 by INCO, The International Nickel Company, Inc. Today this company is part of Vale S.A. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, the American Iron and Steel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org 36% NICKEL-IRON ALLOY For Low Temperature Service Introduction Tensile Requirements 36 per cent nickel-iron alloy possesses a useful The following tensile properties are specified in combination of low thermal expansion, moder- the ASTM standard: ately high strength and good toughness at tem- Tensile Strength .................... 65,000-80,000 psi peratures down to that of liquid helium, -452 ºF .................... 448-552 N/mm2 (-269 ºC). These properties coupled with good Yield Strength weldability and desirable physical properties (0.2% Offset), min ............ 35,000 psi make this alloy attractive for many cryogenic ............ 241 N/ mm2 applications.
    [Show full text]
  • NATURE Obituary Notices
    No. 3590, AUGUST 20, 1938 NATURE 321 Obituary Notices Dr. A. E. H. Tutton, F.R.S. magnificent crystals with six molecules of water. In LFRED EDWIN HOWARD TUTTON, who all, ninety-one salts were studied, and the results A died on July 14, was born on August 22, communicated in about fifty papers from 1890 until 1864, at Cheadle Moseley, now the Edgeley district 1929. As a result of this painstaking and accurate of the borough of Stockport. He attended science work, it was established that the crystallographic classes at the Stockport Mechanics Institute and properties vary regularly with the atomic weights also the evening courses in chemistry of Prof. of the interchangeable elements. The same result Roscoe at Owens College, Manchester. In 1883 was established for the perchlorates and double he went to the Normal School of Science (later the chroma.tes of the alkalis. This work could be brought Royal College of Science) and Royal School of into relation with the structures as revealed by the Mines, South Kensington, with an exhibition, which X-rays when this new method became available. In he took in preference to a scholarship which he had carrying out his crystallographic investigations gained for Owens College. During his period as a Tutton showed the greatest ingenuity in devising student, Huxley was professor of biology, Frankland and perfecting the measuring instruments, so that his of chemistry, Guthrie of physics, Judd of geology methods became well known as representing the and Lockyer of astronomy, and a fellow-student highest standard of crystallographic research. was H.
    [Show full text]
  • The Legacy of Charles-Édouard Guillaume Swiss Perspective
    The legacy of Charles-Édouard Guillaume Swiss perspective Philippe RICHARD Federal institute of metrology METAS Director Guillaume and Switzerland – Charles-Édouard Guillaume was born in Fleurier in Val de Travers on 15 February 1861. The city of Fleurier has two Nobel laureates! – From a watchmaking family, he focused part of his research on precision watchmaking and collaborated all his life with the watchmaking circles in his birth region. – Even after 53 years devoted to the International Bureau of Weights and Measures, Charles-Édouard Guillaume Guillaume’s family home in Fleurier remained deeply attached to Switzerland. © Fondation C.-E. Guillaume, Fleurier 2 Guillaume and Switzerland – In Switzerland, the memory of Charles-Édouard Guillaume, who became famous for his Nobel prize, is strongly associated with his work on precision horology. On the opening of one of the conferences he gave at La Chaux de Fonds, he declared: « Quand on parcourt les montagnes neuchâteloises, on est frappé par l’importance de l’horlogerie. » [When you walk in the mountains of the Neuchâtel region you are stunned by the importance of horology.] – In 1815, Charles-Frédéric Guillaume, Charles-Édouard Guillaume’s grandfather, sought refuge in England where he married a descendant of Revocation refugees who came from the Neuchâtel region. – They started a family and had three boys and established a horology activity. Charles-Édouard Guillaume’s father, who grew up in London before going back to Switzerland, became in turn a horologist. He is also highly educated and passed on to Charles-Édouard the taste for knowledge and horology. 3 Precision horology − The discovery of invar was an opportunity to return to the family tradition.
    [Show full text]