Antigen Receptor Allelic Exclusion: an Update and Reappraisal Brenna L

Total Page:16

File Type:pdf, Size:1020Kb

Antigen Receptor Allelic Exclusion: an Update and Reappraisal Brenna L Antigen Receptor Allelic Exclusion: An Update and Reappraisal Brenna L. Brady, Natalie C. Steinel and Craig H. Bassing This information is current as J Immunol 2010; 185:3801-3808; ; of October 2, 2021. doi: 10.4049/jimmunol.1001158 http://www.jimmunol.org/content/185/7/3801 References This article cites 66 articles, 32 of which you can access for free at: Downloaded from http://www.jimmunol.org/content/185/7/3801.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 2, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Antigen Receptor Allelic Exclusion: An Update and Reappraisal Brenna L. Brady,1 Natalie C. Steinel,1 and Craig H. Bassing Most lymphocytes express cell surface Ag receptor Monoallelic gene expression is a general phenomenon critical chains from single alleles of distinct Ig or TCR loci. for normal biology. This regulation is pervasive during genetic Since the identification of Ag receptor allelic exclusion, imprinting and X chromosome inactivation, enforcing gene the importance of this process and the precise molec- silencing in all cell types (3). Defects in X chromosome in- ular mechanisms by which it is achieved have remained activation and imprinting were found to cause human dis- enigmatic. This brief review summarizes current knowl- orders, which defined the relevance of these processes and edge of the extent to which Ig and TCR loci are subject facilitated their investigation by studying clear phenotypes. In contrast, defects in olfactory or Ag receptor allelic exclusion, to allelic exclusion. Recent progress in studying and de- Downloaded from fining mechanistic steps and molecules that may control which silence tissue-specific genes in distinct lineages, have the monoallelic initiation and subsequent inhibition of not been linked unequivocally to any symptoms in humans V-to-(D)-J recombination is outlined using the mouse (3). However, dysfunction of these tissue-specific processes may result in subtle phenotypes or may be compensated by TCRb locus as a model with frequent comparisons to additional mechanisms, either of which would mask their k the mouse IgH and Ig loci. Potential consequences of significance and provide obstacles for investigation. defects in mechanisms that control Ag receptor allelic http://www.jimmunol.org/ exclusion and a reappraisal of the physiologic relevance Allelic exclusion, self tolerance, and autoimmunity of this immunologic process also are discussed. The A long-standing tenent of adaptive immunity is that virtually Journal of Immunology, 2010, 185: 3801–3808. all lymphocytes express surface TCR or Ig chains from one allele to ensure monospecific Ag recognition and suppress autoim- munity by facilitating central tolerance to self-reactive lympho- ntigen receptor allelic exclusion is defined as the cytes. However, this notion is not supported by current know- surface expression of Ig or TCR chains from a single ledge. Flow cytometry reveals IgH allelic inclusion in only A allelic copy of corresponding genetic loci. Pernis et al. 0.01% of mouse B cells (4), but allelic inclusion of Igk and by guest on October 2, 2021 (1) identified this phenomenon in the 1960s while studying Ig TCR loci in at least 1–10% of mouse lymphocytes (Table I) expression on rabbit lymphocytes, providing evidence for the (5–9). Thus, a significant fraction of normal mouse (and where “one lymphocyte–one antigen receptor” concept of Burnett’s assayed human) lymphocytes express surface Igk or TCR clonal selection theory. Analyses of Ig rearrangements in the chains from both alleles, refuting the “one lymphocyte–one early 1980s suggested that the assembly and expression of an antigen receptor” concept. In addition, recognition of multiple Ag receptor chain from one allele inhibit further V-to-(D)-J distinct ligands is known now to be a general and inherent recombination on the other allele (2). Evidence for such feed- property of T and B cell Ag receptors (10), meaning that far back regulation was provided over the next decade by dem- more than the 1–10% of allelically included lymphocytes onstrations that preassembled Ig or TCR transgenes enforce exhibits poly-specific Ag recognition. Because primary TCR allelic exclusion through inhibiting V-to-(D)-J rearrange- and BCR repertoires include receptors capable of bind- ments (2). These observations helped establish the current ing self-Ags, organisms with adaptive immune systems must dogma that allelic exclusion is maintained by feedback regu- possess central ability to tolerate the generation of autoreactive lation to ensure virtually every lymphocyte exhibits monospe- lymphocytes and thereby prevent autoimmunity. Central tol- cific Ag recognition. erance mechanisms include deletion, stalled maturation, an- Although Ag receptor allelic exclusion has been investigated ergy, or receptor editing (9). In the 1990s, analyses of TCR for almost 50 y, the importance of this process and the precise and Ig transgenic mice demonstrated that dual expression of mechanisms by which it is achieved remain largely unknown. self-reactive and non–self-reactive receptors enables developing Immunology Graduate Group, Division of Cancer Pathobiology, Department of Pa- School of Medicine; and National Institutes of Health Grant R01 CA125195 (to thology and Laboratory Medicine, Center for Childhood Cancer Research, Children’s C.H.B.). Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Address correspondence and reprint requests to Dr. Craig H. Bassing, Children’s Hos- Family Cancer Research Institute, Philadelphia, PA 19104 pital of Philadelphia, 4054 Colket Translational Research Building, 3501 Civic Center 1B.L.B. and N.C.S. contributed equally to this review. Boulevard, Philadelphia, PA 19104. E-mail address: [email protected] Received for publication June 23, 2010. Accepted for publication August 5, 2010. Abbreviations used in this paper: ATM, ataxia telangiectasia mutated; DN, double negative; DP, double positive; Eb, TCRb enhancer; pDb1, Db1 promoter. This work was supported by Training Grant TG GM-07229 of the University of Pennsylvania (to B.L.B.); the Department of Pathology and Laboratory Medicine and Ó the Center for Childhood Cancer Research of the Children’s Hospital of Philadelphia; Copyright 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 the Abramson Family Cancer Research Institute of the University of Pennsylvania www.jimmunol.org/cgi/doi/10.4049/jimmunol.1001158 3802 BRIEF REVIEWS: Ag RECEPTOR ALLELIC EXCLUSION Table I. Allelic inclusion of mouse Ag receptor loci Biallelic In-Frame Locus Allelic Inclusion (%) Experimental Approach V(D)J (%) References IgH 0.01 Natural allotypic differences 2–5 4, 18 Igk 1–7 Hemizygous human Ck knock-in 11 5, 6 TCRa 10 Anti-Va combinations 30 9, 19 TCRb 1–3 Anti-Vb combinations 2–10 8, 20, 22 TCRd 3 Anti-Vd combinations 35 7, 21 TCRg 1 Anti-Vg combinations 10 7 T and B cells to escape deletion and differentiate into mature TCRa allelic inclusion to ∼10% (Table I) (9, 19). Similar lymphocytes that possess autoreactive potential in vitro, yet sequence analyses of Igk, TCRb,TCRg, and TCRd rearrange- generally fail to cause autoimmunity in vivo (11–13). These ments revealed two in-frame genes in 2–35% of cells depend- additional tolerance mechanisms restrain the systemic activa- ing upon the locus (Table I) (5, 7, 20–22). These percentages tion of lymphocytes expressing both self-reactive and non–self- are higher than the corresponding allelic inclusion frequencies, reactive receptors. A separate line of investigation demon- suggesting that pairing restrictions or other mechanisms con- strated that the destructive potential of autoreactive lympho- tribute to Igk,TCRb, TCRg, and TCRd allelic exclusion. cytes that escape central tolerance is restrained through Consistent with this notion, silencing of in-frame V-D-J-Cb Downloaded from dominant peripheral tolerance mechanisms, such as those con- genes at the transcriptional and posttranscriptional levels con- trolled by regulatory T and B cells (14, 15). In this context, tributes to TCRb allelic exclusion mouse ab T cells (20, 23). allelic exclusion might function as an early cell-autonomous These data indicate that multiple mechanisms function in a suc- tolerance mechanism to reduce the frequency of developing cessive manner to limit the frequency of cells with surface lymphocytes with expression of two or more poly-specific Ag expression of Ig or TCR chains from both allelic copies of receptors and thereby facilitate central tolerance. If defects in corresponding loci. In this context, defects in mechanisms that http://www.jimmunol.org/ allelic exclusion overwhelmed central tolerance mechanisms, control feedback inhibition
Recommended publications
  • Allelic Exclusion of the Immunoglobulin Heavy Chain Locus Is Independent of Its Nuclear Localization in Mature B Cells Sjoerd J
    Published online 7 June 2013 Nucleic Acids Research, 2013, Vol. 41, No. 14 6905–6916 doi:10.1093/nar/gkt491 Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells Sjoerd J. B. Holwerda1, Harmen J. G. van de Werken1, Claudia Ribeiro de Almeida2, Ingrid M. Bergen2, Marjolein J. W. de Bruijn2, Marjon J. A. M. Verstegen1, Marieke Simonis1, Erik Splinter1, Patrick J. Wijchers1, Rudi W. Hendriks2,* and Wouter de Laat1,* 1Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands and 2Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Box 2040, 3000 CA, The Netherlands Received April 7, 2013; Revised May 6, 2013; Accepted May 11, 2013 ABSTRACT INTRODUCTION In developing B cells, the immunoglobulin heavy B and T lymphocytes express a large repertoire of antigen chain (IgH) locus is thought to move from repressive receptors that safeguard the robustness of our adaptive to permissive chromatin compartments to facili- immune response. Lymphocyte development uniquely tate its scheduled rearrangement. In mature B relies on scheduled genomic rearrangement of V (variable), D (diversity) and J (joining) gene segments in cells, maintenance of allelic exclusion has been the antigen receptor loci (1–3). proposed to involve recruitment of the non-product- The murine IgH locus spans nearly 3Mb, with ive IgH allele to pericentromeric heterochromatin. upstream 150 functional VH segments spread over Here, we used an allele-specific chromosome con- 2.4 Mb, followed by DH and JH segments and a 200 kb formation capture combined with sequencing constant (CH) gene region.
    [Show full text]
  • Antigen-Receptor Genes & B Cell Development Learning
    Katherine L. Knight, Ph.D. Host Defense 2011 Antigen-Receptor Genes and B Cell Development ANTIGEN-RECEPTOR GENES & B CELL DEVELOPMENT Date: Friday, March 18, 2011 Monday, March 21, 2011 10:30 AM – 11:30 AM 10:30 AM – 11:30 AM LEARNING GOAL You will be able to diagram and describe the stages of B cell development including somatic DNA rearrangements, and explain how a large antibody repertoire is developed. You will also be able to diagram the structure and rearrangement of T cell receptor (TCR) genes and explain how a large TCR repertoire develops. OBJECTIVES To attain the goal for these lectures you will be able to: • State the approximate size of antibody repertoire needed for immune protection. • Diagram the order of H and L chain gene rearrangements that occur during B cell development. • Describe the mechanism by which individual B cells make only one antibody (allelic exclusion) • Diagram the sequence of events leading from rearrangements of germline Ig genes to production of an Ig molecule. • Describe how antibody diversity is generated through combinatorial joining, junctional diversity, and N segment addition. • Describe how antibody diversity is generated in secondary lymphoid tissues • Describe the maturation of B cells from stem cells, including the pre-B cell receptor. • State the cell origin of CLL, Burkitt’s lymphoma, Hodgkin’s lymphoma, ALL, and multiple myeloma • Draw the structure of αβ and γδ T cell receptors. • Diagram the mechanism by which T cells express a single antigen receptor READING ASSIGNMENT Janeway’s Immunobiology (2008), Chapter 4; Chapter 7, pp 262-272; 308-312 LECTURER Katherine L.
    [Show full text]
  • Poor Quality Vβ Recombination Signal Sequences Stochastically Enforce Tcrβ Allelic Exclusion
    ARTICLE Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion Glendon S. Wu1,2, Katherine S. Yang-Iott2, Morgann A. Klink2, Katharina E. Hayer2, Kyutae D. Lee2, and Craig H. Bassing1,2 The monoallelic expression of antigen receptor (AgR) genes, called allelic exclusion, is fundamental for highly specific immune responses to pathogens. This cardinal feature of adaptive immunity is achieved by the assembly of a functional AgR gene on one allele, with subsequent feedback inhibition of V(D)J recombination on the other allele. A range of epigenetic mechanisms have been implicated in sequential recombination of AgR alleles; however, we now demonstrate that a genetic mechanism controls this process for Tcrb. Replacement of V(D)J recombinase targets at two different mouse Vβ gene segments with a higher quality target elevates Vβ rearrangement frequency before feedback inhibition, dramatically increasing the frequency of T cells with TCRβ chains derived from both Tcrb alleles. Thus, TCRβ allelic exclusion is enforced genetically by the low quality of Vβ recombinase targets that stochastically restrict the production of two functional rearrangements before feedback inhibition silences one allele. Introduction Monoallelic expression is an essential process that limits the regulatory mechanisms, the frequent assembly of out-of-frame dosage of numerous genes. Important examples include genetic rearrangements and the requirement for AgR protein expression imprinting and X-chromosome inactivation, as well as the to drive T and B cell development dictate that biallelic expression tissue-specific allelic exclusion of olfactory neuron receptors of any TCR or Ig gene should occur in 20% of lymphocytes (Brady and lymphocyte antigen receptors (AgR).
    [Show full text]
  • VEX1 Controls the Allelic Exclusion Required for Antigenic Variation in Trypanosomes
    VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes Lucy Glovera,1,2, Sebastian Hutchinsona,2, Sam Alsfordb, and David Horna,3 aDivision of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; and bDepartment of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom Edited by Paul T. Englund, The Johns Hopkins University, Baltimore, MD, and approved April 22, 2016 (received for review January 8, 2016) Allelic exclusion underpins antigenic variation and immune evasion Pol-I transcription at the active VSG-ES, combined with atten- in African trypanosomes. These bloodstream parasites use RNA uation at other VSG-ESs (17), allows trypanosomes to produce a polymerase-I (pol-I) to transcribe just one telomeric variant surface single superabundant VSG. Indeed, the active VSG generates the glycoprotein (VSG) gene at a time, producing superabundant and most abundant T. brucei mRNA and protein. The mRNA exceeds > ∼ switchable VSG coats. We identified trypanosome VSG exclusion-1 the next most abundant mRNA by 10-fold, and 10 million (VEX1) using a genetic screen for defects in telomere-exclusive ex- VSGs, constituting 10% of total cell protein (18), form a dense pression. VEX1 was sequestered by the active VSG and silencing of coat on each bloodstream-form cell (19). Antigenic variation itself other VSGs failed when VEX1 was either ectopically expressed or occurs at low frequency and without immune selection (20) due to depleted, indicating positive and negative regulation, respectively. VSG rearrangement or coordinated transcription switching from one VSG-ES to another, the latter occurring in the absence of Positive regulation affected VSGs and nontelomeric pol-I–transcribed detectable change in the DNA sequence (1).
    [Show full text]
  • Chapter 5 Genetic Models
    Chapter 5 1 2 Organization and Expression of Immunoglobulin Genes 3 4 5 6 Genetic Models Models to Explain Antibody Diversity 1) The Germ Line Theory : “genome posses • How to account for : the large repertoire of antibody genes to – 1) Vast diversity of antibody specificities account for all the antibody diversity” – 2) Presence of Variable regions at the amino end of Heavy and Light chains, and a 2) The Somatic Variation Theory : “genome Constant region at the carboxyl end posses a relatively small number of – 3) Existence of isotypes (different Heavy antibody genes and diversity is generated by chains) with same antigenic specificity mutation and recombination of these genes during somatic development” The two-gene model : Tonegawa (1976): Immunoglobulin gene rearrangement • Developed by Dreyer and Bennet in 1965 • Two separate genes code for the Heavy and Light chains. One codes for the V region and the other for the C region • These genes come together during at the DNA level to form a continuous message • There are thousands of V genes in germ - J Probe - Digested fragments line but only one gene for the C region 1 Three genetic loci encode immunoglobulin molecules: - Two loci encoding the light chains Multigene Families - kappa locus - lambda locus • Light Chains : V, J and C gene segments. - One locus encoding the heavy chain • Lambda : Humans (30V, 4J and 7C genes) These three loci are located on different chromosomes. • Kappa : Humans (40V, 5J and 1C genes) • Heavy Chains : V, D, J and C gene segments • Heavy Chains : Humans (50V, 25D, 6J and 8 C genes) The loci encoding immunoglobulins have a unique structure.
    [Show full text]
  • Allelic Exclusion Rearrangement. III. Heavy and Light Chain Models for Antigen Receptor Gene
    The Journal of Immunology Models for Antigen Receptor Gene Rearrangement. III. Heavy and Light Chain Allelic Exclusion1 Gil Kalmanovich and Ramit Mehr2 The extent of allelic exclusion in Ig genes is very high, although not absolute. Thus far, it has not been clearly established whether rapid selection of the developing B cell as soon as it has achieved the first productively rearranged, functional heavy chain is the only mechanism responsible for allelic exclusion. Our computational models of Ag receptor gene rearrangement in B lymphocytes are hereby extended to calculate the expected fractions of heavy chain allelically included newly generated B cells as a function of the probability of heavy chain pairing with the surrogate light chain, and the probability that the cell would test this pairing immediately after the first rearrangement. The expected fractions for most values of these probabilities significantly exceed the levels of allelic inclusion in peripheral B cells, implying that in most cases productive rearrangement and subsequent cell surface expression of one allele of the heavy chain gene probably leads to prevention of rearrangement completion on the other allele, and that additional mechanisms, such as peripheral selection disfavoring cells with two productively rearranged heavy chain genes, may also play a role. Furthermore, we revisit light chain allelic exclusion by utilizing the first (to our knowledge) computational model which addresses and enumerates B cells maturing with two productively rearranged ␬ light chain genes. We show that, assuming that there are no selection mechanisms responsible for abolishing cells expressing two light chains, the repertoire of newly generated B lymphocytes exiting the bone marrow must contain a significant fraction of such ␬ double-productive B cells.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • Origin and Evolution of the Adaptive Immune System: Genetic Events and Selective Pressures
    REVIEWS Origin and evolution of the adaptive immune system: genetic events and selective pressures Martin F. Flajnik* and Masanori Kasahara‡ Abstract | The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS — including two lymphoid cell lineages — arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS. Somatic hypermutation The adaptive immune system (AIS) is fascinating mechanisms, but jawless fish (Agnathans) apparently Mutation of the variable gene to both scientists and laymen: we have a specific yet had none. This mystifying finding led to the ‘big bang’ after mature B cells are incredibly diverse system that can fight myriad patho‑ theory of AIS emergence6, which is one of the main stimulated. It results in affinity maturation of the antibody gens and has a ‘memory’ — the basis of vaccination topics of this Review. response. Like the class switch, — that enables a rapid response to previously encoun‑ The discovery in jawless fish of a lymphoid cell‑based it requires activation-induced tered pathogens.
    [Show full text]
  • B Lymphocyte Development and Activation
    Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai 09/26/05; 9 AM Shiv Pillai B Lymphocyte Development and Activation Recommended Reading: Abbas et al., 5th edition, Chapters 7 and 9; Janeway et al., 5th edition, Chapters 6 and 9 B cell development is initiated in the fetal liver prior to birth and continues in the bone-marrow subsequently. The B-1 lineage develops primarily from fetal liver derived stem cells. Conventional B cells are derived from bone-marrow derived HSCs and are sometimes referred to as B-2 cells. While the initial steps of B lymphoid commitment and development depend upon signals from stromal cells, unique B lineage specific selection events drive the developmental program after immunoglobulin gene rearrangement is initiated. Approximately one-third of developing pre-B cells in the bone-marrow make in-frame V to DJH rearrangements and these cells are positively selected (positive selection I). In the bone-marrow pre-B receptor signaling mediates both positive selection I as well as allelic exclusion at the IgH locus. Once both heavy and light chain genes are rearranged and expressed, immature B cells may also be positively selected in response to antigen receptor mediated signals (positive selection II). If these cells express self- reactive antigen receptors, they may be subject to receptor editing) or they may be selected against by means of a deletional process. Cell selection and allelic exclusion mediated by the pre-B receptor A rearranged immunoglobulin heavy chain gene encodes two forms of heavy chain protein, a membrane form and a secreted form.
    [Show full text]
  • The Ig Heavy Chain Protein but Not Its Message Controls Early B Cell Development
    The Ig heavy chain protein but not its message controls early B cell development Muhammad Assad Aslama,b,1, Mir Farshid Alemdehya,1, Bingtao Haoc, Peter H. L. Krijgerd, Colin E. J. Pritcharde, Iris de Rinkf, Fitriari Izzatunnisa Muhaimina, Ika Nurzijaha, Martijn van Baaleng, Ron M. Kerkhovenf, Paul C. M. van den Berka, Jane A. Skokc, and Heinz Jacobsa,2 aDivision of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; bInstitute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan; cDepartment of Pathology, New York University School of Medicine, New York, NY 10016; dHubrecht Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; eMouse Clinic for Cancer and Aging Transgenic Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; fGenome Core Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and gFlow Cytometry Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands Edited by Klaus Rajewsky, Max Delbrück Center for Molecular Medicine, Berlin, Germany, and approved October 13, 2020 (received for review March 13, 2020) Development of progenitor B cells (ProB cells) into precursor B cells female embryonic development also constitutes a well-studied ex- (PreB cells) is dictated by immunoglobulin heavy chain checkpoint ample of monoallelic expression, during which one of the X chro- (IgHCC), where the IgHC encoded by a productively rearranged Igh mosomes is randomly silenced (12–14). This phenomenon equalizes allele assembles into a PreB cell receptor complex (PreBCR) to gen- the dosage of X-linked genes between male and female containing erate signals to initiate this transition and suppressing antigen one and two X chromosomes, respectively (15, 16).
    [Show full text]
  • Random Monoallelic Expression of Genes on Autosomes: Parallels with X-Chromosome Inactivation Anne-Valerie Gendrel, Lucile Marion-Poll, Kimiko Katoh, Edith Heard
    Random monoallelic expression of genes on autosomes: Parallels with X-chromosome inactivation Anne-Valerie Gendrel, Lucile Marion-Poll, Kimiko Katoh, Edith Heard To cite this version: Anne-Valerie Gendrel, Lucile Marion-Poll, Kimiko Katoh, Edith Heard. Random monoallelic ex- pression of genes on autosomes: Parallels with X-chromosome inactivation. Seminars in Cell and Developmental Biology, Elsevier, 2016, 10.1016/j.semcdb.2016.04.007. hal-01312980 HAL Id: hal-01312980 https://hal.sorbonne-universite.fr/hal-01312980 Submitted on 9 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Random monoallelic expression of genes on autosomes: Parallels with X- chromosome inactivation Anne-Valerie Gendrel1,2*, Lucile Marion-Poll1,2*, Kimiko Katoh1,2* and Edith Heard1,2 1. Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France. 2. Sorbonne Universités, UPMC Univ Paris 6, F-75005, Paris, France. * These authors contributed equally to this work. Corresponding authors: [email protected]; [email protected] Abstract Genes are generally expressed from their two alleles, except in some particular cases such as random inactivation of one of the two X chromosomes in female mammals or imprinted genes which are expressed only from the maternal or the paternal allele.
    [Show full text]
  • Differential Accessibility at the K Chain Locus Plays a Role in Allelic Exclusion
    The EMBO Journal Vol. 21 No. 19 pp. 5255±5261, 2002 Differential accessibility at the k chain locus plays a role in allelic exclusion Maya Goldmit1, Mark Schlissel2, known how this chromosomal mark enables the initial Howard Cedar1 and Yehudit Bergman3,4 selection of only one allele, the process itself must be 3 mediated through monoallelic epigenetic changes. The Hubert H.Humphrey Center for Experimental Medicine and There is a great deal of evidence suggesting that Cancer Research, 1Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, rearrangement, in general, is controlled by chromatin Jerusalem 91120, Israel and 2Division of Immunology, Department of accessibility (for reviews, see Roth and Roth, 2000; Molecular and Cell Biology, University of California, Berkeley, Schlissel, 2000; Krangel, 2001). Even though all lymphoid CA 94720-3200, USA recombination events are mediated by Rag proteins 4Corresponding author operating on canonical recombination signal sequences e-mail: [email protected] (RSSs), the m, k and l loci undergo rearrangement only in B cells, while TCRa and b become rearranged speci®cally Gene rearrangement in the immune system is always in T cells (for a review, see Lewis, 1994). Accessibility preceded by DNA demethylation and increased chro- presumably controls the timing of rearrangement as well, matin accessibility. Using a model system in which since the m locus almost always gets activated prior to rearrangement of the endogenous immunoglobulin k during B cell development. In keeping with this, it has k locus is prevented, we demonstrate that these epi- been shown for some of the receptor loci that rearrange- genetic and chromatin changes actually occur on one ment is preceded by an increase in chromatin accessibility allele with a higher probability than the other.
    [Show full text]