Running Head: VIRTUAL PRIVATE NETWORK SECURITY 1 Virtual Private Network Security Seminar Antonio Aguilar Seminar in Computer Sc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptography
Pattern Recognition and Applications Lab CRYPTOGRAPHY Giorgio Giacinto [email protected] University of Cagliari, Italy Spring Semester 2019-2020 Department of Electrical and Electronic Engineering Cryptography and Security • Used to hide the content of a message • Goals – Confidentiality – Authenticity – Integrity • The text is modified by an encryption function – An interceptor should not be able to understand all or part of the message content http://pralab.diee.unica.it 2 Encryption/Decryption Process Key Key (Optional) (Optional) Original Plaintext Encryption Ciphertext Decryption Plaintext http://pralab.diee.unica.it 3 Keys and Locks http://pralab.diee.unica.it 4 Keys L F A Y B D E T C A R C S E E T Y H G S O U S U D H R D F C E I D B T E M E P Q X N R C I D S F T U A E T C A U R M F N P E C J N A C R D B E M K C I O P F B E W U X I Y M C R E P F N O G I D C N T M http://pralab.diee.unica.it 5 Keys L F A Y B D E T C A R C S E E T Y H G S O U S U D H R D F C E I D B T E M E P Q X N R C I D S F T U A E T C A U R M F N P E C J N A C R D B E M K C I O P F B E W U X I Y M C R E P F N O G I D C N T M http://pralab.diee.unica.it 6 Steganography - = http://pralab.diee.unica.it https://towardsdatascience.com/steganography-hiding-an-image-inside-another-77ca66b2acb1 7 Definitions • Cryptography algorithm C = E(K,M) A function E with two inputs – a message M – a key K that outputs – the encrypted message C The algorithm is based on a shared secret between the sender and the receiver K The Encryption Key http://pralab.diee.unica.it 8 Symmetric -
President's Corner
TAPR PSR #137 Winter 2018 President’s Corner By Steve Bible, N7HPR TAPR will be at the HamSCI Workshop <https://tinyurl.com/y8errhsu > on February 23 and 24 at the New Jersey Institute of Technology in Newark. I, along with a handful of other TAPR officers and board members will attend the workshop, which will focus on the results of the 2017 Great American Eclipse ham radio ionospheric experiment and the development of a Personal Space Weather station. As in the past, TAPR will be at Hamvention <http://www.hamvention.org> in May with a suite of booths, our highly regarded TAPR Forum and the annual TAPR- AMSAT Banquet, President’s Corner 01 In the fall, the 37th annual ARRL/TAPR Digital Communications Conference PulsePuppy 02 (DCC) will take place September 14-16 in Albuquerque, New Mexico. The Greg Jones Memorial Endowment 03 conference invites technical papers for presentation at the conference and for Phase 4 Space Kickoff 04 publication in the Conference Proceedings (presentation at the conference is not XC-3006 06 required for publication). Papers are due by July 31, 2018, to Maty Weinberg, Evangelizing Ham Radio Data Modes 07 Set Up an IPv6 Gateway on Packet 08 ARRL, 225 Main St., Newington, CT 06111 or via e-mail to [email protected]. The TAPR Wear Available 10 Conference website <http://www.tapr.org/dcc> has full details. Aruba on a Sloper 11 Hope to see you in Newark, Xenia and Albuquerque! N7DRB SK 12 Write Here! 13 73, On the Net 13 Steve Bible, N7HPR, President TAPR The Fine Print 14 ### Our Membership App 15 TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art. -
N2N: a Layer Two Peer-To-Peer VPN
N2N: A Layer Two Peer-to-Peer VPN Luca Deri1, Richard Andrews2 ntop.org, Pisa, Italy1 Symstream Technologies, Melbourne, Australia2 {deri, andrews}@ntop.org Abstract. The Internet was originally designed as a flat data network delivering a multitude of protocols and services between equal peers. Currently, after an explosive growth fostered by enormous and heterogeneous economic interests, it has become a constrained network severely enforcing client-server communication where addressing plans, packet routing, security policies and users’ reachability are almost entirely managed and limited by access providers. From the user’s perspective, the Internet is not an open transport system, but rather a telephony-like communication medium for content consumption. This paper describes the design and implementation of a new type of peer-to- peer virtual private network that can allow users to overcome some of these limitations. N2N users can create and manage their own secure and geographically distributed overlay network without the need for central administration, typical of most virtual private network systems. Keywords: Virtual private network, peer-to-peer, network overlay. 1. Motivation and Scope of Work Irony pervades many pages of history, and computing history is no exception. Once personal computing had won the market battle against mainframe-based computing, the commercial evolution of the Internet in the nineties stepped the computing world back to a substantially rigid client-server scheme. While it is true that the today’s Internet serves as a good transport system for supplying a plethora of data interchange services, virtually all of them are delivered by a client-server model, whether they are centralised or distributed, pay-per-use or virtually free [1]. -
Security & Savings with Virtual Private Networks
Everybody’s connecting. Security & Savings with Virtual Private Networks In today’s New Economy, small businesses that might have dealt with just local or regional concerns now have to consider global markets and logistics. Many companies even have facilities spread across the country or throughout the world. At the same time security concerns of their network from hackers, Denial-of-Service (DoS) attacks and sending data over the Internet have become more widespread. Whether companies have a local, national, or global presence, they all need one thing: a way to maintain fast, secure, and reliable communications wherever their offices and workers are located. Until recently, such communications were only available by using leased telephone lines to maintain a Wide Area Network (WAN). Leased lines enabled companies to expand their private network beyond their immediate geographic area. Moreover, a WAN provided advantages over a public network like the Internet when it came to reliability, performance, and security. Unfortunately, leased lines are expensive to maintain, with costs rising as the distance between the offices increases. As the popularity of the Internet grew, businesses turned to it as a cost-effective way to extend their networks. The continuing popularity with the Internet has led to the evolution of Virtual Private Networks (VPNs). A VPN is a connection that allows private data to be sent securely over a shared or public network, such as the Internet. In fact, one of the driving forces behind VPNs is the Internet and its global presence. With VPNs, communication links between users and sites can be achieved quickly, inexpensively, and safely across the world. -
Ipv6 — an Introduction
IPv6 — An introduction Owen DeLong [email protected] Portions Copyright © 2009-2014 by Hurricane Electric, used under license to Owen DeLong More IPv4 NAT Are you fscking kidding me? ©2014 Black Lotus Communications IPv6 Transition -- How ready are we? n Things that are ready Backbones CMTS Systems (DOCSIS 3) MacOS (10.4+) Linux (2.6 Kernels) Windows (7, 2008, XP (limited)) WiMax (specification, head end equipment) LTE (some) CPE (very limited) Early Adopters and some industry experts Black Lotus Me ©2014 Black Lotus Communications IPv6 Transition -- How ready are we? ▪ Things that are NOT ready ➢ PON Systems ➢ DSL Systems ➢ CMTS Systems (DOCSIS 2) ➢ WDS/EVDO/HSPA ➢ WIMAX (handsets, providers) ➢ Older Windows (XP and earlier) ➢ Embedded systems ➢ Printers ➢ Home entertainment devices ➢ CPE (most) ➢ Most IT staff and management ©2014 Black Lotus Communications An Important Decision ▪ Which Approach will you take? IPv4 is just fine. IPv4/IPv6 Dual Stack Now We just need MOAR NAT!! My dual stack network is running great! ©2014 Black Lotus Communications What we’ll cover ▪ Basics of IPv6 ▪ IPv6 Addressing Methods ➢ SLAAC ➢ DHCP ➢ Static ➢ Privacy ▪ Linux Configuration for Native Dual Stack ▪ IPv6 without a native backbone available ▪ Free IPv6? ©2014 Black Lotus Communications Some additional topics ▪ Routing ▪ Firewalls ▪ DNS ▪ Reverse DNS ▪ Troubleshooting ▪ Staff Training ©2014 Black Lotus Communications Basics: IPv4 vs. IPv6 Property IPv4 Address IPv6 Address Bits 32 128 Total address 3,758,096,384 unicast 42+ Undecilion assignable -
Analysis of Recent Attacks on Ssl/Tls Protocols A
ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED MATHEMATICS OF MIDDLE EAST TECHNICAL UNIVERSITY BY DUYGU OZDEN¨ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CRYPTOGRAPHY SEPTEMBER 2016 Approval of the thesis: ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS submitted by DUYGU OZDEN¨ in partial fulfillment of the requirements for the de- gree of Master of Science in Department of Cryptography, Middle East Technical University by, Prof. Dr. Bulent¨ Karasozen¨ Director, Graduate School of Applied Mathematics Prof. Dr. Ferruh Ozbudak¨ Head of Department, Cryptography Assoc. Prof. Dr. Murat Cenk Supervisor, Cryptography, METU Examining Committee Members: Assoc. Prof. Dr. Murat Cenk Cryptography, METU Assoc. Prof. Dr. Ali Doganaksoy˘ Mathematics, METU Asst. Prof. Dr. Fatih Sulak Mathematics, ATILIM UNIVERSITY Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: DUYGU OZDEN¨ Signature : v vi ABSTRACT ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS Ozden,¨ Duygu M.S., Department of Cryptography Supervisor : Assoc. Prof. Dr. Murat Cenk September 2016, 46 pages Transport Layer Security(TLS) and its predecessor Secure Socket Layer(SSL) are two important cryptographic, certificate based protocols that satisfy secure communication in a network channel. They are widely used in many areas such as online banking systems, online shopping, e-mailing, military systems or governmental systems. -
Cryptographic Control Standard, Version
Nuclear Regulatory Commission Office of the Chief Information Officer Computer Security Standard Office Instruction: OCIO-CS-STD-2009 Office Instruction Title: Cryptographic Control Standard Revision Number: 2.0 Issuance: Date of last signature below Effective Date: October 1, 2017 Primary Contacts: Kathy Lyons-Burke, Senior Level Advisor for Information Security Responsible Organization: OCIO Summary of Changes: OCIO-CS-STD-2009, “Cryptographic Control Standard,” provides the minimum security requirements that must be applied to the Nuclear Regulatory Commission (NRC) systems which utilize cryptographic algorithms, protocols, and cryptographic modules to provide secure communication services. This update is based on the latest versions of the National Institute of Standards and Technology (NIST) Guidance and Federal Information Processing Standards (FIPS) publications, Committee on National Security System (CNSS) issuances, and National Security Agency (NSA) requirements. Training: Upon request ADAMS Accession No.: ML17024A095 Approvals Primary Office Owner Office of the Chief Information Officer Signature Date Enterprise Security Kathy Lyons-Burke 09/26/17 Architecture Working Group Chair CIO David Nelson /RA/ 09/26/17 CISO Jonathan Feibus 09/26/17 OCIO-CS-STD-2009 Page i TABLE OF CONTENTS 1 PURPOSE ............................................................................................................................. 1 2 INTRODUCTION .................................................................................................................. -
AWS Site-To-Site VPN User Guide AWS Site-To-Site VPN User Guide
AWS Site-to-Site VPN User Guide AWS Site-to-Site VPN User Guide AWS Site-to-Site VPN: User Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. AWS Site-to-Site VPN User Guide Table of Contents What is Site-to-Site VPN ..................................................................................................................... 1 Concepts ................................................................................................................................... 1 Working with Site-to-Site VPN ..................................................................................................... 1 Site-to-Site VPN limitations ......................................................................................................... 2 Pricing ...................................................................................................................................... 2 How AWS Site-to-Site VPN works ........................................................................................................ 3 Site-to-Site VPN Components ..................................................................................................... -
By Steve Guendert, Ph.D. Long-Distance Extension Networks Between Data Centers
Fibre Channel over Internet Protocol ver the past decade, extension networks for storage have become commonplace and continue to grow in size and importance. Growth isn’t limited to new Odeployments but also involves the expansion of existing deployments. Requirements for data protection will never Basics for ease, as the economies of many countries depend on successful and continued business operations; thus, laws have been passed mandating data protection. Modern-day dependence on remote data replication (RDR) means there’s little tolerance for lapses that leave data vulnerable to loss. In IBM mainframe environments, reliable and resilient networks—to the point of no frame loss and in-order frame delivery—are necessary for error-free operation, high performance and operational ease. This improves availability, reduces risk and operating expenses and, most important of all, reduces risk of data loss. A previous article, “Storage Networking Business Mainframers Continuity Solutions” (Enterprise Tech Journal, October/ November 2013, available at http://entsys.me/ixond), introduced the various topologies and protocols used for the networks associated with business continuity, disaster recovery and continuous availability (BC/DR/CA). This article focuses in-depth on one of those protocols— Fibre Channel over Internet Protocol (FCIP)—and how it’s used in a mainframe environment to provide By Steve Guendert, Ph.D. long-distance extension networks between data centers. B • Enterprise Tech Journal • Winter 2013/2014Enterprise Tech Journal • Winter 2013/2014 Because of the higher costs of long-distance dark fiber FC devices in the fabric are unaware of the presence of the connectivity compared with other communications IP network. -
What Is a Virtual Private Network?
C H A P T E R 1 What Is a Virtual Private Network? A virtual private network (VPN) allows the provisioning of private network services for an organization or organizations over a public or shared infrastructure such as the Internet or service provider backbone network. The shared service provider backbone network is known as the VPN backbone and is used to transport traffic for multiple VPNs, as well as possibly non-VPN traffic. VPNs provisioned using technologies such as Frame Relay and Asynchronous Transfer Mode (ATM) virtual circuits (VC) have been available for a long time, but over the past few years IP and IP/Multiprotocol Label Switching (MPLS)-based VPNs have become more and more popular. This book focuses on describing the deployment of IP- and IP/MPLS-based VPNs. The large number of terms used to categorize and describe the functionality of VPNs has led to a great deal of confusion about what exactly VPNs are and what they can do. The sections that follow cover VPN devices, protocols, technologies, as well as VPN categories and models. VPN Devices Before describing the various VPN technologies and models, it is useful to first describe the various customer and provider network devices that are relevant to the discussion. Devices in the customer network fall into one of two categories: • Customer (C) devices—C devices are simply devices such as routers and switches located within the customer network. These devices do not have direct connectivity to the service provider network. C devices are not aware of the VPN. • Customer Edge (CE) devices—CE devices, as the name suggests, are located at the edge of the customer network and connect to the provider network (via Provider Edge [PE] devices). -
Final Resourcediscoverysecuritydistrsystems Thesis Linelarsen
Resource discovery and Security in Distributed systems Resource discovery and Security in Distributed systems by Line Larsen Thesis is partial fulfilment of the degree of Master in Technology in Information and Communication Technology Agder University College Faculty of Engineering and Science Grimstad Norway May 2007 May 2007 – Line Larsen 1 Resource discovery and Security in Distributed systems Abstract To be able to access our files at any time and any where, we need a system or service which is free, has enough storage space and is secure. A centralized system can handle these challenges today, but does not have transparency, openness and scalability like a peer to peer network has. A hybrid system with characteristics from both distributed and centralized topologies is the ideal choice. In this paper I have gone through the basic theory of network topology, protocols and security and explained “search engine”, “Middleware”, “Distributed Hash Table” and the JXTA protocol. I then have briefly examined three existing peer to peer architectures which are “Efficient and Secure Information Sharing in Distributed, collaborative Environments” based on Sandbox and transitive delegation from 1999, pStore: A Secure Peer–to-Peer backup System” based on versioning and file blocks from 2001 and iDIBS from 2006, which is an improved versions of the SourceForge project Distributed Internet Backup System (DIBS) using Luby Transform codes instead of Reed-Solomon codes for error correction when reconstructing data. I have also looked into the security aspects related to using distributed systems for resource discovery and I have suggested a design of a resource discovery architecture which will use JXTA for backup of personal data using Super-peer nodes in a peer to peer architecture. -
Technical and Legal Overview of the Tor Anonymity Network
Emin Çalışkan, Tomáš Minárik, Anna-Maria Osula Technical and Legal Overview of the Tor Anonymity Network Tallinn 2015 This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre). It does not necessarily reflect the policy or the opinion of the Centre or NATO. The Centre may not be held responsible for any loss or harm arising from the use of information contained in this publication and is not responsible for the content of the external sources, including external websites referenced in this publication. Digital or hard copies of this publication may be produced for internal use within NATO and for personal or educational use when for non- profit and non-commercial purpose, provided that copies bear a full citation. www.ccdcoe.org [email protected] 1 Technical and Legal Overview of the Tor Anonymity Network 1. Introduction .................................................................................................................................... 3 2. Tor and Internet Filtering Circumvention ....................................................................................... 4 2.1. Technical Methods .................................................................................................................. 4 2.1.1. Proxy ................................................................................................................................ 4 2.1.2. Tunnelling/Virtual Private Networks ............................................................................... 5