cancers Review The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks Máté A. Demény 1,2,* and László Virág 1,2,* 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary 2 MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary * Correspondence:
[email protected] (M.A.D.);
[email protected] (L.V.) Simple Summary: Poly (ADP-ribose) polymerase (PARP) proteins regulate DNA damage correction, replication, and gene transcription. By controlling pivotal aspects of these processes, PARPs are heavily implicated in cancer development. Inhibitors of PARPs, approved for cancer chemotherapy a few years ago, have achieved great success against tumors of the breast and ovary carrying mutations in the BRCA1/2 genes. The spectrum of the inhibitors is avidly sought to be extended to tumors with different genetic backgrounds and cancers of other origins. This pursuit requires thorough apprehension of PARP-dependent processes affecting cancer development. The hallmarks of cancer are acquired by defining capabilities that differentiate cancer cells from their normal counterparts. Here, in two joint papers, we walk through the connections between these cancer traits and PARP functions. The present review focuses on how PARPs affect the features of cancer that can be attributed to cell-intrinsic changes increasing proliferative potential and survival capabilities. In a kindred paper, we explore the PARP association of cancer hallmarks that derive from tissue-level reorganization in tumors and intercellular interactions of cancer cells. Citation: Demény, M.A.; Virág, L. Abstract: The 17-member poly (ADP-ribose) polymerase enzyme family, also known as the ADP- The PARP Enzyme Family and the ribosyl transferase diphtheria toxin-like (ARTD) enzyme family, contains DNA damage-responsive Hallmarks of Cancer Part 1.