3 Fibrous Components and Motors 1. Actin Microfilaments

Total Page:16

File Type:pdf, Size:1020Kb

3 Fibrous Components and Motors 1. Actin Microfilaments B. The Cytoskeletal System and Adhesion ___________________________________ • Red = Actin Microfilaments ___________________________________ • Green = Tubulin Microtubules ___________________________________ ___________________________________ ___________________________________ ___________________________________ Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings ___________________________________ ___________________________________ 3 Fibrous Components and Motors ___________________________________ • Thin Filaments: Actin family of proteins ___________________________________ • Microtubules: Tubulin family of proteins ___________________________________ • Intermediate Filaments: Very cell‐specific family of proteins ___________________________________ • The first two have molecular motors ___________________________________ ___________________________________ ___________________________________ 1. Actin Microfilaments ___________________________________ • Chains of few to many 42kDa monomers • Found in all eukaryotic cells (except nematode worm sperm) ___________________________________ • Highly Conserved: Genes vary <20% from algae to humans; human primary protein sequence <5% ___________________________________ • Three main isoforms: alpha, beta, gamma • Alpha is muscle actin, beta and gamma are found ___________________________________ in nearly all cells ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ATP Binding ADP Binding ___________________________________ Figure 16-12 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-74c,d Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-47 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ Fig. 6‐26 ___________________________________ Microvillus ___________________________________ Plasma membrane ___________________________________ Microfilaments (actin filaments) ___________________________________ ___________________________________ Intermediate filaments 0.25 µm ___________________________________ ___________________________________ ___________________________________ Actin tracks allow specific movement between two points ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-69a Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Remember..... ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 17-49a Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ The Key Structural Elements ___________________________________ 1. 70 Å filaments (f‐actin) ‐ polymers of globular monomers (g‐actin) formed as double helix ___________________________________ 2. Structural polarity –sequences and structures ___________________________________ unequally directed towards each of the ends ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ “Dynamic instability” ___________________________________ a. Can form, crosslink, breakdown and reform rapidly b. The cell can build new structures as its needs change ___________________________________ ___________________________________ Figure 16-7 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ 2. Tubulin Microtubules ___________________________________ • Large hollow tubes of many 110kDa dimers • Three main isoforms: alpha, beta, gamma ___________________________________ • Found in all eukaryotic cells • Alpha and beta found in microtubules, gamma ___________________________________ found in microtubule organizing center (MTOC) • Highly Conserved: Primary sequences vary ___________________________________ <10% from algae to humans ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ GTP Binding GDP Binding ___________________________________ Figure 16-11 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Large‐scale, long distance ___________________________________ movement of cellular components, ___________________________________ including organelles ___________________________________ ___________________________________ ___________________________________ Figure 16-30c Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ Fig. 6‐22 Centrosome ___________________________________ Microtubule ___________________________________ Centrioles 0.25 µm ___________________________________ ___________________________________ ___________________________________ Longitudinal section of Microtubules Cross section one centriole of the other centriole ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-30b Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Projections of ___________________________________ asters to move the chromosomes ___________________________________ in cell division ___________________________________ ___________________________________ ___________________________________ Figure 16-85c Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Directed transport along the neuronal axon ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-104 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ ___________________________________ Cilia and flagella ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Give direction ___________________________________ to plant cell division and growth and ___________________________________ dictate sites of plant wall synthesis ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Plant microtubules have no obvious MTOC ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ The Key Structural Elements ___________________________________ 1. These are also polar – unequally directed towards each end a. most: (–) end toward nucleus and (+) end to cell membrane ___________________________________ 2. 250 Å filaments formed as a hollow bundle of 13 protofilaments a. protofilaments are long polymers of tubulin dimers ___________________________________ b. dimers are one alpha and one beta globular monomers c. gamma tubulin makes up the MTOC: centriole or basal body ___________________________________ ___________________________________ ___________________________________ ___________________________________ Like actin, microtubules can be changed as the cells needs change ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-16c Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ 3. Intermediate Filaments ___________________________________ • Rope‐like filament structures formed from 8 protofilaments twisted together ___________________________________
Recommended publications
  • Of the Bacterial Cytoskeleton
    30 Apr 2004 18:9 AR AR214-BB33-09.tex AR214-BB33-09.sgm LaTeX2e(2002/01/18) P1: FHD 10.1146/annurev.biophys.33.110502.132647 Annu. Rev. Biophys. Biomol. Struct. 2004. 33:177–98 doi: 10.1146/annurev.biophys.33.110502.132647 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on January 7, 2004 MOLECULES OF THE BACTERIAL CYTOSKELETON Jan Lowe,¨ Fusinita van den Ent, and Linda A. Amos MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; email: [email protected]; [email protected]; [email protected] Key Words FtsZ, MreB, ParM, tubulin, actin ■ Abstract The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin ho- mologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplas- mic cell wall–synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell.
    [Show full text]
  • Identification and Characterization of Novel Filament-Forming Proteins In
    www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.
    [Show full text]
  • Investigating the Actin Regulatory Activities of Las17, the Wasp Homologue in S. Cerevisiae Liemya E. Abugharsa
    Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae A thesis submitted for the degree of Doctor of Philosophy By Liemya E. Abugharsa Department of Molecular Biology and Biotechnology University of Sheffield March 2015 Abstract Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae Clathrin mediated endocytosis (CME) in S. cerevisiae requires the dynamic interplay between many proteins at the plasma membrane. Actin polymerisation provides force to drive membrane invagination and vesicle scission. The WASp homologue in yeast, Las17 plays a major role in stimulating actin filament assembly during endocytosis. The actin nucleation ability of WASP family members is attributed to their WCA domain [WH2 (WASP homology2) domain, C central, and A (acidic) domains] which provides binding sites for both actin monomers and the Arp2/3 complex. In addition, the central poly-proline repeat region of Las17 is able to bind and nucleate actin filaments independently of the Arp2/3 complex. While Las17 is a key regulator of endocytic progression and has been found to be phosphorylated in global studies, the mechanism behind regulation of Las17 actin-based function is unclear. Therefore, the aims of this study were to investigate the post-translation modification of Las17 by phosphorylation, and to determine how this modification impacts on Las17 function both in vivo and in vitro. Mass Spec analysis was employed and allowed identification of further phosphorylation sites in Las17. Through the studies described here I was able to demonstrate that Las17 is phosphorylated, and that one specific phosphorylation event was of importance in endocytosis.
    [Show full text]
  • Cytoskeleton UCSD
    Bacterial Cytoskeletal Elements Establishment of morphogenesis in bacteria ? ? Cytoskeletal elements The bacterial cytoskeleton Eukaryotes tubulin actin IFs Bacteria FtsZ MreB Ccrp (Crescentin) 3D structures of cytoskeletal elements Phylogeny of FtsZ Tubulin ortholog FtsZ forms a ring-like structure in the cell centre Immuno-fluorescence of FtsZ (red) and DNA (green) in Bacillus subtilis E. coli: FtsZ-GFP Tubulin forms hollow tubules, while FtsZ forms single strand polymers Assembly of the divisome Cell division in Bacillus subtilis Actin Treadmilling Plasmid segregation via a double protein filament K. Gerdes, J. Pogliano Bipolar movement through search and capturing of a second plasmid ParM-Alexa 488, ParR-Alexa red D. Mullins Structures of actin-like proteins F-actin and MreB filaments MreB MreB ParM ParM MreB J. Löwe Depletion of MreB (or MreC) leads to the formation of round cells and is lethal 2 4 6 doubling times membrane-stain The depletion of MreB leads to a loss in rod- shaped cell morphology GFP-MreB: dynamc helical filaments? GFP-MreB 2D arrangement of MreB filaments 3D arrangement of MreB filaments Filament dynamics at 100 nm resolution: TIRF-SIM YFP-MreB N-SIM A. Rohrbach Model for the generation of rod shape Intermediate-Filament proteins Crescentin affects cell curvature in Caulobacter crescentus C. Jacobs-Wagner, Yale Crescentin localizes to the short axis of the cell Crescentin forms left handed helices Crescentin-YFP Deletion of IF encoding genes leads to loss of cell shape in Helicobacter pylori Ccrps (coiled coil-rich proteins) form long bundles of filaments Cell curvature through mechanical bending of cells via a rigid protein filament Positioning of magnetosomes through an actin-like protein (MamK) Spiroplasma melliferum Bacterial cytoskeletal elements Model for the function of MreB Motility of Spiroplasma Filament formation in a mammalian cell system YFP-MreB CFP-Mbl mCherry-MreBH .
    [Show full text]
  • When Cytoskeletal Worlds Collide
    COMMENTARY When cytoskeletal worlds collide Eva Nogales The Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, CA 94720- 3220; and The Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ytoskeletal aficionados and mo- domain of the next along the filament, lecular evolutionists are in for burying the nucleotide between them (the C a surprising treat in PNAS. C-terminal domain contributing essential Löwe and colleagues, who have residues for nucleotide hydrolysis, and for some years now brought to our atten- thus coupling hydrolysis with polymeriza- tion the conservation of the actin and tion) (10, 11). Surprisingly, TubZ main- tubulin cytoskeletons across kingdoms tains the same orientation of the N- through their structural studies (1, 2), are terminal and C-terminal domains across now giving us new striking images to think an interface as that used by tubulin along about (3). Just test your knowledge of protofilaments, but these two domains, cytoskeleton structure by looking at their within one subunit, have dramatically ro- figure 4. Do not think twice and say aloud tated with respect to each other compared what you think those filaments are. Now with the tubulin and FtsZ cases. The result read the title of their article. Surprised? Fig. 1. Distinct filament structure with the same is that whereas the latter form linear ar- Read more. assembly interfaces. Tubulin (brighter colors) and rays where one subunit is simply translated TubZ was recently identified as a tubu- TubZ (lighter colors) share a conserved interface along the filament axis, in TubZ there is along the filament that sandwiches the nucleotide lin/FtsZ-like protein involved in plasmid (shown in green).
    [Show full text]
  • Treadmilling of a Prokaryotic Tubulin-Like Protein, Tubz, Required for Plasmid Stability in Bacillus Thuringiensis
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis Rachel A. Larsen, Christina Cusumano,1 Akina Fujioka, Grace Lim-Fong,2 Paula Patterson, and Joe Pogliano3 Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA Prokaryotes rely on a distant tubulin homolog, FtsZ, for assembling the cytokinetic ring essential for cell division, but are otherwise generally thought to lack tubulin-like polymers that participate in processes such as DNA segregation. Here we characterize a protein (TubZ) from the Bacillus thuringiensis virulence plasmid pBtoxis, which is a member of the tubulin/FtsZ GTPase superfamily but is only distantly related to both FtsZ and tubulin. TubZ assembles dynamic, linear polymers that exhibit directional polymerization with plus and minus ends, movement by treadmilling, and a critical concentration for assembly. A point mutation (D269A) that alters a highly conserved catalytic residue within the T7 loop completely eliminates treadmilling and allows the formation of stable polymers at a much lower protein concentration than the wild-type protein. When expressed in trans, TubZ(D269A) coassembles with wild-type TubZ and significantly reduces the stability of pBtoxis, demonstrating a direct correlation between TubZ dynamics and plasmid maintenance. The tubZ gene is in an operon with tubR, which encodes a putative DNA-binding protein that regulates TubZ levels. Our results suggest that TubZ is representative of a novel class of prokaryotic cytoskeletal proteins important for plasmid stability that diverged long ago from the ancient tubulin/FtsZ ancestor.
    [Show full text]
  • The Complex Simplicity of the Bacterial Cytoskeleton COMMENTARY
    COMMENTARY The complex simplicity of the bacterial cytoskeleton COMMENTARY Felipe Merinoa and Stefan Raunsera,1 Proper segregation of genetic material is a universal requirement for all living organisms. In eukaryotic organisms, the mitotic spindle, a specialized tubulin- based cytoskeletal structure, actively separates the chromosomes into two new nuclei during cell division (1). For prokaryotes, the story is not much different. Although they contain only one chromosome, plas- mids, and no spindle apparatus, the genetic informa- tion has to be replicated and segregated during cell division. Decades of research have shown that chro- mosomal segregation in prokaryotes requires the ac- tion of proteins that actively move chromosomes to their intended place. Plasmids have their own way of ensuring proper distribution during cell division. For high-copy plasmids, numbers are the strength; chance alone ensures that each daughter cell receives some copies guaranteeing genetic transmission. Low-copy plasmids, however, are actively partitioned and code for their own segregation machinery. They carry a tri- partite system, composed of two proteins and a centromere-like recognition sequence in the plasmid itself. One of the proteins creates the force involved in plasmid movement. The second acts as an adaptor; it binds the DNA at the recognition sequence and links it to the force-generating protein (2). Interestingly, while all Fig. 1. Schematic representation of the plasmid segregation mechanism involving actin-like bacterial proteins. (A) Overview of the key macromolecular low-copy plasmids share this mechanism, different plas- complexes involved in the plasmid segregation process. Bundling and growth of mids use completely unrelated sets of proteins.
    [Show full text]
  • Intermediate Filaments • Microtubules 5.3 Eukaryotic Cells Contain Organelles
    Cytoskeleton Figure 5.7 Eukaryotic Cells (Part 1) Figure 5.7 Eukaryotic Cells (Part 4) 5.3 Eukaryotic Cells Contain Organelles Cytoskeleton: • Supports and maintains cell shape • Holds organelles in position • Moves organelles • Involved in cytoplasmic streaming • Interacts with extracellular structures to hold cell in place 5.3 Eukaryotic Cells Contain Organelles The cytoskeleton has three components: • Microfilaments • Intermediate filaments • Microtubules 5.3 Eukaryotic Cells Contain Organelles Microfilaments: • Help a cell or parts of a cell to move • Determine cell shape • Made from the protein actin • Actin polymerizes to form long helical chains (reversible) Figure 5.14 The Cytoskeleton (Part 1) 5.3 Eukaryotic Cells Contain Organelles Actin filaments are associated with localized changes in cell shape, including cytoplasmic streaming and amoeboid movement. Microfilaments are also involved in the formation of pseudopodia. Figure 5.15 Microfilaments and Cell Movements 5.3 Eukaryotic Cells Contain Organelles In some cells, microfilaments form a meshwork just inside the cell membrane. This provides structure, for example in the microvilli that line the human intestine. Figure 5.16 Microfilaments for Support (Part 1) Figure 5.16 Microfilaments for Support (Part 2) Assembly and structure of actin filaments (A) Actin monomers (G actin) polymerize to form actin filaments (F actin). The first step is the formation of dimers and trimers, which then grow by the addition of monomers to both ends. (B) Structure of an actin monomer. (C) Space-filling model of F actin. Nine actin monomers are represented in different colors. (C, courtesy of Dan Richardson.) Reversible polymerization of actin monomers Actin polymerization is a reversible process, in which monomers both associate with and dissociate from the ends of actin filaments.
    [Show full text]
  • Structural Complexity of Filaments Formed from the Actin and Tubulin Folds
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Structural complexity of filaments formed from the actin and tubulin folds Jiang, Shimin; Ghoshdastider, Umesh; Narita, Akihiro; Popp, David; Robinson, Robert Charles 2016 Jiang, S., Ghoshdastider, U., Narita, A., Popp, D., & Robinson, R. C. (2016). Structural complexity of filaments formed from the actin and tubulin folds. Communicative & Integrative Biology, 9(6), e1242538‑. doi:10.1080/19420889.2016.1242538 https://hdl.handle.net/10356/89146 https://doi.org/10.1080/19420889.2016.1242538 © 2016 Shimin Jiang, Umesh Ghoshdastider, Akihiro Narita, David Popp, and Robert C. Robinson. Published with license by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution‑Non‑Commercial License (http://creativecommons.org/licenses/by‑nc/3.0/), which permits unrestricted non‑commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have beenasserted. Downloaded on 02 Oct 2021 09:13:56 SGT COMMUNICATIVE & INTEGRATIVE BIOLOGY 2016, VOL. 9, NO. 6, e1242538 (6 pages) http://dx.doi.org/10.1080/19420889.2016.1242538 REVIEW Structural complexity of filaments formed from the actin and tubulin folds Shimin Jianga, Umesh Ghoshdastidera, Akihiro Naritab, David Poppa, and Robert C. Robinson a,c,d,e,f aInstitute of Molecular and Cell Biology, AÃSTAR (Agency for Science, Technology and Research), Biopolis, Singapore;
    [Show full text]
  • The Role of Cytoskeletal Elements in Shaping Bacterial Cells Hongbaek Cho*
    J. Microbiol. Biotechnol. (2015), 25(3), 307–316 http://dx.doi.org/10.4014/jmb.1409.09047 Research Article Review jmb The Role of Cytoskeletal Elements in Shaping Bacterial Cells Hongbaek Cho* Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA Received: September 16, 2014 Revised: September 26, 2014 Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many Accepted: September 26, 2014 bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional First published online characterization of the bacterial cytoskeleton have revolutionized our understanding of September 29, 2014 bacterial cells, revealing their elaborate and dynamic subcellular organization. As in *Corresponding author eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, Phone: +1-617-432-6970; DNA segregation, and other important cellular processes. However, in accordance with the Fax: +1-617-432-6970; vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins E-mail: hongbaek_cho@hms. harvard.edu play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA pISSN 1017-7825, eISSN 1738-8872 segregation and coordination of cell wall synthesis. Copyright© 2015 by The Korean Society for Microbiology Keywords: Bacterial cytoskeleton, DNA segregation, FtsZ, MreB, ParA, peptidoglycan and Biotechnology Introduction cytokinesis, and cell morphogenesis.
    [Show full text]
  • Final Symposium Abstracts
    SYMPOSIUM ABSTRACTS Saturday June 3, 2006 For Making Genetic Networks Operate Robustly, Unintelligent Non-Design Suffices Garry Odell, Center for Cell Dynamics, University of Washington Five years ago we (George von Dassow, Ed Munro, Eli Meir, and I) made mathematical/computer models of two ancient and famous genetic networks that act early in diverse embryos to establish spatial gene expression patterns prefiguring the body plan. Our models revealed these networks to be astonishingly robust. That is, they continue to make the correct pattern in the face of thousand-fold variations in the strengths and functional forms of interactions among participating genes. After getting over my surprise that it was even possible to design networks with such properties, I now believe only networks having this kind of robustness can be functionally heritable in polymorphic populations. What design features might endow genetic networks with the kind of extreme robustness we found? To probe for answers, I wrote a computer program that haphazardly generates randomly connected networks made from about the same number of biochemically sensible parts that constitute the segment polarity and neurogenic networks. We (Bjorn Millard, Ed Munro, and I) devised computer algorithms that discover and catalog the stable expression patterns any network can make, and, from all these, distills those patterns the network can make robustly with respect to variations of its parameters. The bottom line is that 19 out of 20 random networks that our program created (i.e. networks devoid of any purposeful design whatever) could make at least one, and usually many, complex stable spatial expression patterns with the same high robustness that the real, evolved, segment-polarity and neurogenic networks exhibit.
    [Show full text]
  • Xenopus DPPA2 Is a Direct Inhibitor of Microtubule Polymerization Required for Nuclear Assembly John Zhao Xue
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2015 Xenopus DPPA2 is a Direct Inhibitor of Microtubule Polymerization Required for Nuclear Assembly John Zhao Xue Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Xue, John Zhao, "Xenopus DPPA2 is a Direct Inhibitor of Microtubule Polymerization Required for Nuclear Assembly" (2015). Student Theses and Dissertations. Paper 272. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. XENOPUS DPPA2 IS A DIRECT INHIBITOR OF MICROTUBULE POLYMERIZATION REQUIRED FOR NUCLEAR ASSEMBLY A Thesis Presented to the Faculty of The Rockefeller University In Partial Fulfillment of the Requirements for The degree of Doctor of Philosophy by John Zhao Xue June 2015 © Copyright by John Z. Xue 2015 XENOPUS DPPA2 IS A DIRECT INHIBITOR OF MICROTUBULE POLYMERIZATION REQUIRED FOR NUCLEAR ASSEMBLY John Z. Xue, Ph.D. The Rockefeller University 2015 The eukaryotic nucleus mediates the genomic functions of information storage and gene expression, but must be completely rebuilt after every open mitosis as well as during fertilization. Nuclear abnormalities are observed in many tissue malignancies and congenital disorders, but the causes and effects of such pathologies remain poorly understood. Here we use cell-free Xenopus egg extracts to investigate the contribution of the DNA-binding protein Dppa2 to nuclear assembly. In Dppa2-depleted extracts, nuclei are small and deformed, assemble incomplete nuclear envelopes and fail DNA replication.
    [Show full text]