REEP5 Polyclonal Antibody

Total Page:16

File Type:pdf, Size:1020Kb

REEP5 Polyclonal Antibody PRODUCT DATA SHEET Bioworld Technology,Inc. REEP5 polyclonal antibody Catalog: BS71516 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: The antibody was affinity-purified from rabbit antiserum REEP5 (receptor expression-enhancing protein 5), also by affinity-chromatography using epitope-specific im- known as C5orf18, DP1, TB2 or D5S346, is a 189 amino munogen and the purity is > 95% (by SDS-PAGE). acid multi-pass membrane protein. Thought to promote Applications: the functional cell surface expression of olfactory recep- WB 1:500 - 1:2000 tors, REEP5 belongs to the DP1 family and is encoded by Storage&Stability: a gene that maps to chromosome 5. With 181 million base Store at 4°C short term. Aliquot and store at -20°C long pairs encoding around 1,000 genes, chromosome 5 is term. Avoid freeze-thaw cycles. about 6% of human genomic DNA. Chromosome 5 is Specificity: associated with Cockayne syndrome through the ERCC8 REEP5 polyclonal antibody detects endogenous levels of gene and familial adenomatous polyposis through the REEP5 protein. adenomatous polyposis coli (APC) tumor suppressor DATA: gene. Treacher Collins syndrome is also chromosome 5 associated and is caused by insertions or deletions within the TCOF1 gene. Deletion of the parm of chromosome 5 leads to cri du chat syndrome. Deletion of 5q or chromo- some 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome. Product: Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, Western blot analysis of extracts of various cell lines, using REEP5 an- 50% glycerol, pH7.2 tibody. Molecular Weight: Note: ~ 21 kDa For research use only, not for use in diagnostic procedure. Swiss-Prot: Q00765 Purification&Purity: Bioworld Technology, Inc. Bioworld technology, co. Ltd. Add: 1660 South Highway 100, Suite 500 St. Louis Park, Add: No 9, weidi road Qixia District Nanjing, 210046, MN 55416,USA. P. R. China. Email: [email protected] Email: [email protected] Tel: 6123263284 Tel: 0086-025-68037686 Fax: 6122933841 Fax: 0086-025-68035151 .
Recommended publications
  • Ck1δ Over-Expressing Mice Display ADHD-Like Behaviors, Frontostriatal Neuronal Abnormalities and Altered Expressions of ADHD-Candidate Genes
    Molecular Psychiatry (2020) 25:3322–3336 https://doi.org/10.1038/s41380-018-0233-z ARTICLE CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes 1 1 1 2 1 1 1 Mingming Zhou ● Jodi Gresack ● Jia Cheng ● Kunihiro Uryu ● Lars Brichta ● Paul Greengard ● Marc Flajolet Received: 8 November 2017 / Revised: 4 July 2018 / Accepted: 18 July 2018 / Published online: 19 October 2018 © Springer Nature Limited 2018 Abstract The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D- amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine- induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as 1234567890();,: 1234567890();,: well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model.
    [Show full text]
  • Reference Gene Validation Via RT–Qpcr for Human Ipsc-Derived Neural Stem Cells and Neural Progenitors
    Molecular Neurobiology https://doi.org/10.1007/s12035-019-1538-x Reference Gene Validation via RT–qPCR for Human iPSC-Derived Neural Stem Cells and Neural Progenitors Justyna Augustyniak1 & Jacek Lenart2 & Gabriela Lipka1 & Piotr P. Stepien3 & Leonora Buzanska1 Received: 26 November 2018 /Accepted: 22 February 2019 # The Author(s) 2019 Abstract Correct selection of the reference gene(s) is the most important step in gene expression analysis. The aims of this study were to identify and evaluate the panel of possible reference genes in neural stem cells (NSC), early neural progenitors (eNP) and neural progenitors (NP) obtained from human-induced pluripotent stem cells (hiPSC). The stability of expression of genes commonly used as the reference in cells during neural differentiation is variable and does not meet the criteria for reference genes. In the present work, we evaluated the stability of expression of 16 candidate reference genes using the four most popular algorithms: the ΔCt method, BestKeeper, geNorm and NormFinder. All data were analysed using the online tool RefFinder to obtain a comprehensive ranking. Our results indicate that NormFinder is the best tool for reference gene selection in early stages of hiPSC neural differentiation. None of the 16 tested genes is suitable as reference gene for all three stages of development. We recommend using different genes (panel of genes) to normalise RT–qPCR data for each of the neural differentiation stages. Keywords human induced Pluripotent Stem Cell (hiPSC) . Neural Stem Cells . Neural
    [Show full text]
  • CNV Analysis in 169 Patients with Bladder Exstrophy-Epispadias
    von Lowtzow et al. BMC Medical Genetics (2016) 17:35 DOI 10.1186/s12881-016-0299-x RESEARCH ARTICLE Open Access CNV analysis in 169 patients with bladder exstrophy-epispadias complex Catharina von Lowtzow1, Andrea Hofmann1,2, Rong Zhang1,2, Florian Marsch1, Anne-Karoline Ebert3, Wolfgang Rösch4, Raimund Stein5, Thomas M. Boemers6, Karin Hirsch7, Carlo Marcelis8, Wouter F. J. Feitz9, Alfredo Brusco10, Nicola Migone10, Massimo Di Grazia11, Susanne Moebus12, Markus M. Nöthen1,2, Heiko Reutter1,13, Michael Ludwig14*† and Markus Draaken1,2† Abstract Background: The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the congenital uro-rectal malformation spectrum. Initial studies have implicated rare copy number variations (CNVs), including recurrent duplications of chromosomal region 22q11.21, in BEEC etiology. Methods: To detect further CNVs, array analysis was performed in 169 BEEC patients. Prior to inclusion, 22q11.21 duplications were excluded using multiplex ligation-dependent probe amplification. Results: Following the application of stringent filter criteria, seven rare CNVs were identified: n = 4, not present in 1307 in-house controls; n = 3, frequency of <0.002 in controls. These CNVs ranged from 1 to 6.08 Mb in size. To identify smaller CNVs, relaxed filter criteria used in the detection of previously reported BEEC associated chromosomal regions were applied. This resulted in the identification of six additional rare CNVs: n = 4, not present in 1307 in-house controls; n = 2, frequency <0.0008 in controls. These CNVs ranged from 0.03–0.08 Mb in size. For 10 of these 13 CNVs, confirmation and segregation analyses were performed (5 of maternal origin; 5 of paternal origin).
    [Show full text]
  • Of the Bacterial Cytoskeleton
    30 Apr 2004 18:9 AR AR214-BB33-09.tex AR214-BB33-09.sgm LaTeX2e(2002/01/18) P1: FHD 10.1146/annurev.biophys.33.110502.132647 Annu. Rev. Biophys. Biomol. Struct. 2004. 33:177–98 doi: 10.1146/annurev.biophys.33.110502.132647 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on January 7, 2004 MOLECULES OF THE BACTERIAL CYTOSKELETON Jan Lowe,¨ Fusinita van den Ent, and Linda A. Amos MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; email: [email protected]; [email protected]; [email protected] Key Words FtsZ, MreB, ParM, tubulin, actin ■ Abstract The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin ho- mologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplas- mic cell wall–synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell.
    [Show full text]
  • Identification and Characterization of Novel Filament-Forming Proteins In
    www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . REEP5 (E-13): sc-133405 BACKGROUND RECOMMENDED SECONDARY REAGENTS REEP5 (receptor expression-enhancing protein 5), also known as C5orf18, To ensure optimal results, the following support (secondary) reagents are DP1, TB2 or D5S346, is a 189 amino acid multi-pass membrane protein. recommended: 1) Western Blotting: use goat anti-rabbit IgG-HRP: sc-2004 Thought to promote the functional cell surface expression of olfactory recep - (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti- tors, REEP5 belongs to the DP1 family and is encoded by a gene that maps rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ to chromosome 5. With 181 million base pairs encoding around 1,000 genes, Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: chromosome 5 is about 6% of human genomic DNA. Chromosome 5 is sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecip- asso ciated with Cockayne syndrome through the ERCC8 gene and familial itation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). adenomatous polyposis through the adenomatous polyposis coli (APC) tumor 3) Immunofluorescence: use goat anti-rabbit IgG-FITC: sc-2012 (dilution suppressor gene. Treacher Collins syndrome is also chromosome 5 associat ed range: 1:100-1:400) or goat anti-rabbit IgG-TR: sc-2780 (dilution range: and is caused by insertions or deletions within the TCOF1 gene. Deletion of 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941. the p arm of chromosome 5 leads to Cri-du-chat syndrome.
    [Show full text]
  • On the Role of Chromosomal Rearrangements in Evolution
    On the role of chromosomal rearrangements in evolution: Reconstruction of genome reshuffling in rodents and analysis of Robertsonian fusions in a house mouse chromosomal polymorphism zone by Laia Capilla Pérez A thesis submitted for the degree of Doctor of Philosophy in Animal Biology Supervisors: Dra. Aurora Ruiz-Herrera Moreno and Dr. Jacint Ventura Queija Institut de Biotecnologia i Biomedicina (IBB) Departament de Biologia Cel·lular, Fisiologia i Immunologia Departament de Biologia Animal, Biologia Vegetal i Ecologia Universitat Autònoma de Barcelona Supervisor Supervisor PhD candidate Aurora Ruiz-Herrera Moreno Jacint Ventura Queija Laia Capilla Pérez Bellaterra, 2015 A la mare Al pare Al mano “Visto a la luz de la evolución, la biología es, quizás, la ciencia más satisfactoria e inspiradora. Sin esa luz, se convierte en un montón de hechos varios, algunos de ellos interesantes o curiosos, pero sin formar ninguna visión conjunta.” Theodosius Dobzhansky “La evolución es tan creativa. Por eso tenemos jirafas.” Kurt Vonnegut This thesis was supported by grants from: • Ministerio de Economía y Competitividad (CGL2010-15243 and CGL2010- 20170). • Generalitat de Catalunya, GRQ 1057. • Ministerio de Economía y Competitividad. Beca de Formación de Personal Investigador (FPI) (BES-2011-047722). • Ministerio de Economía y Competitividad. Beca para la realización de estancias breves (EEBB-2011-07350). Covers designed by cintamontserrat.blogspot.com INDEX Abstract 15-17 Acronyms 19-20 1. GENERAL INTRODUCTION 21-60 1.1 Chromosomal rearrangements
    [Show full text]
  • Investigating the Actin Regulatory Activities of Las17, the Wasp Homologue in S. Cerevisiae Liemya E. Abugharsa
    Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae A thesis submitted for the degree of Doctor of Philosophy By Liemya E. Abugharsa Department of Molecular Biology and Biotechnology University of Sheffield March 2015 Abstract Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae Clathrin mediated endocytosis (CME) in S. cerevisiae requires the dynamic interplay between many proteins at the plasma membrane. Actin polymerisation provides force to drive membrane invagination and vesicle scission. The WASp homologue in yeast, Las17 plays a major role in stimulating actin filament assembly during endocytosis. The actin nucleation ability of WASP family members is attributed to their WCA domain [WH2 (WASP homology2) domain, C central, and A (acidic) domains] which provides binding sites for both actin monomers and the Arp2/3 complex. In addition, the central poly-proline repeat region of Las17 is able to bind and nucleate actin filaments independently of the Arp2/3 complex. While Las17 is a key regulator of endocytic progression and has been found to be phosphorylated in global studies, the mechanism behind regulation of Las17 actin-based function is unclear. Therefore, the aims of this study were to investigate the post-translation modification of Las17 by phosphorylation, and to determine how this modification impacts on Las17 function both in vivo and in vitro. Mass Spec analysis was employed and allowed identification of further phosphorylation sites in Las17. Through the studies described here I was able to demonstrate that Las17 is phosphorylated, and that one specific phosphorylation event was of importance in endocytosis.
    [Show full text]
  • Cytoskeleton UCSD
    Bacterial Cytoskeletal Elements Establishment of morphogenesis in bacteria ? ? Cytoskeletal elements The bacterial cytoskeleton Eukaryotes tubulin actin IFs Bacteria FtsZ MreB Ccrp (Crescentin) 3D structures of cytoskeletal elements Phylogeny of FtsZ Tubulin ortholog FtsZ forms a ring-like structure in the cell centre Immuno-fluorescence of FtsZ (red) and DNA (green) in Bacillus subtilis E. coli: FtsZ-GFP Tubulin forms hollow tubules, while FtsZ forms single strand polymers Assembly of the divisome Cell division in Bacillus subtilis Actin Treadmilling Plasmid segregation via a double protein filament K. Gerdes, J. Pogliano Bipolar movement through search and capturing of a second plasmid ParM-Alexa 488, ParR-Alexa red D. Mullins Structures of actin-like proteins F-actin and MreB filaments MreB MreB ParM ParM MreB J. Löwe Depletion of MreB (or MreC) leads to the formation of round cells and is lethal 2 4 6 doubling times membrane-stain The depletion of MreB leads to a loss in rod- shaped cell morphology GFP-MreB: dynamc helical filaments? GFP-MreB 2D arrangement of MreB filaments 3D arrangement of MreB filaments Filament dynamics at 100 nm resolution: TIRF-SIM YFP-MreB N-SIM A. Rohrbach Model for the generation of rod shape Intermediate-Filament proteins Crescentin affects cell curvature in Caulobacter crescentus C. Jacobs-Wagner, Yale Crescentin localizes to the short axis of the cell Crescentin forms left handed helices Crescentin-YFP Deletion of IF encoding genes leads to loss of cell shape in Helicobacter pylori Ccrps (coiled coil-rich proteins) form long bundles of filaments Cell curvature through mechanical bending of cells via a rigid protein filament Positioning of magnetosomes through an actin-like protein (MamK) Spiroplasma melliferum Bacterial cytoskeletal elements Model for the function of MreB Motility of Spiroplasma Filament formation in a mammalian cell system YFP-MreB CFP-Mbl mCherry-MreBH .
    [Show full text]
  • When Cytoskeletal Worlds Collide
    COMMENTARY When cytoskeletal worlds collide Eva Nogales The Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, CA 94720- 3220; and The Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ytoskeletal aficionados and mo- domain of the next along the filament, lecular evolutionists are in for burying the nucleotide between them (the C a surprising treat in PNAS. C-terminal domain contributing essential Löwe and colleagues, who have residues for nucleotide hydrolysis, and for some years now brought to our atten- thus coupling hydrolysis with polymeriza- tion the conservation of the actin and tion) (10, 11). Surprisingly, TubZ main- tubulin cytoskeletons across kingdoms tains the same orientation of the N- through their structural studies (1, 2), are terminal and C-terminal domains across now giving us new striking images to think an interface as that used by tubulin along about (3). Just test your knowledge of protofilaments, but these two domains, cytoskeleton structure by looking at their within one subunit, have dramatically ro- figure 4. Do not think twice and say aloud tated with respect to each other compared what you think those filaments are. Now with the tubulin and FtsZ cases. The result read the title of their article. Surprised? Fig. 1. Distinct filament structure with the same is that whereas the latter form linear ar- Read more. assembly interfaces. Tubulin (brighter colors) and rays where one subunit is simply translated TubZ was recently identified as a tubu- TubZ (lighter colors) share a conserved interface along the filament axis, in TubZ there is along the filament that sandwiches the nucleotide lin/FtsZ-like protein involved in plasmid (shown in green).
    [Show full text]
  • Blood Gene Expression-Based Prediction of Lethality After Respiratory Infection by Influenza a Virus in Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.27.357053; this version posted October 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Blood gene expression-based prediction of lethality after respiratory infection by influenza A virus in mice Authors: Pedro Milanez-Almeida1,2,*, Andrew J. Martins1, Parizad Torabi-Parizi1,3, Luis M. Franco1,4, John S. Tsang1,2, Ronald N. Germain1,2,* 1 Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 2 Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 3 Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda MD 4 Present affiliation: Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD *Correspondence to: [email protected] and [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.27.357053; this version posted October 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Abstract Lethality after respiratory infection with influenza A virus (IAV) is associated with potent immune activation and lung tissue damage.
    [Show full text]
  • Rabbit Anti-REEP5/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-REEP5/FITC Conjugated antibody SL9481R-FITC Product Name: Anti-REEP5/FITC Chinese Name: FITC标记的受体表达蛋白5/息肉相关蛋白抗体 C5orf18; DP1; Polyposis locus protein 1; Receptor expression enhancing protein 5; Alias: Receptor expression-enhancing protein 5; TB2; TB2 protein; D5S346;REEP5_HUMAN. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Pig,Horse, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 21kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human REEP5 Lsotype: IgG Purification: affinitywww.sunlongbiotech.com purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: REEP5 is a 189 amino acid multi-pass membrane protein. Thought to promote the functional cell surface expression of olfactory receptors, REEP5 belongs to the DP1 Product Detail: family and is encoded by a gene that maps to chromosome 5. With 181 million base pairs encoding around 1,000 genes, chromosome 5 is about 6% of human genomic DNA.
    [Show full text]