Metabolic Footprinting and Systems Biology: the Medium Is the Message

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Footprinting and Systems Biology: the Medium Is the Message Nature Reviews Microbiology | AOP, published online 10 June 2005; doi:10.1038/nrmicro1177 REVIEWS METABOLIC FOOTPRINTING AND SYSTEMS BIOLOGY: THE MEDIUM IS THE MESSAGE Douglas B. Kell*, Marie Brown*, Hazel M. Davey‡, Warwick B. Dunn*, Irena Spasic* and Stephen G. Oliver§ Abstract | One element of classical systems analysis treats a system as a black or grey box, the inner structure and behaviour of which can be analysed and modelled by varying an internal or external condition, probing it from outside and studying the effect of the variation on the external observables. The result is an understanding of the inner make-up and workings of the system. The equivalent of this in biology is to observe what a cell or system excretes under controlled conditions — the ‘metabolic footprint’ or exometabolome — as this is readily and accurately measurable. Here, we review the principles, experimental approaches and scientific outcomes that have been obtained with this useful and convenient strategy. The METABOLOME is defined as the quantitative comple- either the transcriptome or proteome. This is because ment of low-molecular-weight metabolites present in the activities of metabolic pathways are reflected a cell under a given set of physiological conditions1–9. more accurately in the concentrations of pools of It lends itself readily to functional genomic and other metabolites than in the concentrations of the relevant analyses, as changes in a cell’s physiology as a result of enzymes (or indeed the concentrations of the mRNAs gene deletion or overexpression are amplified through encoding them). the hierarchy of the TRANSCRIPTOME and the PROTEOME, Metabolomics is therefore considered to be, in *School of Chemistry, and are therefore more easily measurable through the many senses, more ‘useful’ (that is, ‘discriminatory’) University of Manchester, metabolome, even when changes in metabolic fluxes than transcriptomics and proteomics, for the following Faraday Building, are negligible1,10–12. In addition, the default assump- reasons. Metabolomics is ‘downstream’ — changes in the PO Box 88, Sackville Street, tion underlying transcriptome and proteome analysis metabolome are amplified relative to changes in the tran- Manchester M60 1QD, UK. ‡Institute of Biological — that an x-fold increase in a transcript or protein scriptome and proteome, and are arguably numerically 1 Sciences, University of Wales, necessarily results in an x-fold increase in the effective more tractable . There is no need for a whole genome Cledwyn Building, activity — does not normally reflect reality. At any given sequence or for large expressed-sequence-tag databases Aberystwyth SY23 3DD, UK. time, the rate of an enzymatic reaction is a function of to be available for each species. Metabolic profiling is § Faculty of Life Sciences, the available substrates, products and modifiers as well cheaper and more high-throughput than proteomics University of Manchester, 13 Michael Smith Building, as gene expression , and the formalism of metabolic and transcriptomics, making it feasible to examine Oxford Road, control analysis14–16 tells us that, although changes in large numbers of samples from organisms that have Manchester M13 9PT, UK. the expression level of individual proteins might have been ‘grown’ under a wide range of conditions. Finally, Correspondence to D.B.K. little influence on fluxes, they can and do have large the technology involved in metabolomics is generic, as e-mail: [email protected] effects on the concentrations of intermediary metabo- a given metabolite — unlike a transcript or protein — is doi:10.1038/nrmicro1177 lites. Consequently, the metabolome is expected — and the same in every organism that contains it (other than Published online 10 June 2005 found17 — to be more sensitive to perturbations than for secondary metabolites, as originally defined18). NATURE REVIEWS | MICROBIOLOGY ADVANCE ONLINE PUBLICATION | 1 © 2005 Nature Publishing Group REVIEWS 0.037 METABOLOME ab Nominally all of the small- molecular-weight metabolites in 0.03 a sample. For practical reasons, this is rarely, if ever, achieved using a single extraction 0.024 method, and subsets of metabolites (‘metabolic profiles’) Samples Table of metabolites or peaks 0.018 are more typically obtained. Footprinting analyses TRANSCRIPTOME 0.012 All the mRNA molecules Mean (% total ion current) (transcripts) in a sample. 0.006 PROTEOME Nominally all the proteins in a 0 Chemometrics or machine- sample. This measurement is 50 100 150 200 250 300 350 400 not usually achieved because of Identification learning data processing m/z poor solubilities, especially of Figure 1 | The basis of metabolic footprinting. a | The basic metabolic footprinting strategy, starting with samples and membrane proteins, and proceeding through analysis to data processing until a classification can be effected or a scientific conclusion can be drawn. sometimes protein digests are This can lead to the acquisition and analysis of further samples and subsequent loops around this cycle. b | A typical metabolic used, from which peptides footprint (H.M.D. & D.B.K., unpublished data) using direct-injection positive-ionization low-resolution (to unit mass) electrospray representing the proteome are mass spectrometry54. Shown is the average footprint from 250 single-gene yeast knockout strains. Note that there are peaks at analysed. The concept of the + + proteome should also include every m/z (mass/charge ratio) value. Glucose can be identified at m/z 181, 203 (Na adduct) and 219 (K adduct). Other metabolites tentatively identified are glycerol-NH + (m/z 110), valine (m/z 118), histidine (m/z 156) and phenylalanine-Na+ or all the post-translational 4 + modifications that might occur. methionine-K (m/z 188). CE-MS A technique in which However, measurement of a complete set of intra- As such secretory activities clearly reflect cellular metabolites are separated using cellular microbial metabolites not only requires rapid metabolic activity (and the level of transcription and capillary electrophoresis and quenching of metabolism19,20 and a time-consuming translation of relevant genes), it occurred to us that then analysed using mass spectrometry. Two different runs and often inadequate extraction and separation pro- the global measurement of secreted metabolites might 20–22 are used for cations and anions, cedure , but also the development of a method be exploited to analytical advantage. In particular, whereas neutral molecules can suitable for detecting and quantifying large numbers the rapid quenching required to profile intracellular be separated using techniques of metabolites that can be present at widely differing metabolites would be avoided, as the turnover time that give them an effective charge. concentrations. Although several diverse techniques of metabolites diluted into the greater extracellular have previously been used for this purpose, including space is decreased in proportion to the relative ratios GCMS enzymatic metabolite quantification12, nuclear mag- of extracellular and intracellular volumes. Although A high-resolution analytical netic resonance (NMR) spectroscopy12,23, capillary the characterization of metabolites in microbial cul- technique in which molecules, electrophoresis coupled to mass spectrometry CEMS24, ture broths has already been carried out using various typically derivatized to enhance 50,51 their volatility, are separated gas chromatography coupled to mass spectrometry detection methods (and in culture off-gas using 25–28 48,52,53 and then identified using mass GCMS and liquid chromatography coupled to mass an electronic ‘nose’ ), such analyses were largely spectrometry. spectrometry LCMS29–32, none of these completely ful- confined to specific metabolites and have not been fils the need for an accurate, simple and, in particular, done on a global scale. LCMS METABOLIC FOOTPRINTING54 A technique in which rapid method with a broad dynamic range. We note Consequently, we devised metabolites are separated especially the rapid timescale for the turnover of an as a novel method for the functional analysis and according to their polarity. In intracellular metabolite (the turnover time is approxi- characterization of cells using the metabolome metabolomics, reverse-phase mately equal to the concentration of the metabolite (FIG. 1). Metabolic footprinting as described relies chromatography (in which the divided by the flux through the pathway of which it is not on the measurement of intracellular metabolites column is hydrophobic and an 33 organic solvent such as methanol a member ), which can be under 1 second in microbial (a technique which is widely referred to as METABOLIC 19 55 or acetonitrile is used for systems, even for metabolites at mM concentrations . FINGERPRINTING ) but on the monitoring of metabo- elution) is most popular, lites consumed from, and secreted into, the growth although polar chromato- Metabolite secretion, excretion and footprinting medium by batch cultures of yeast using direct- graphies are also used. It has long been known that microorganisms (and injection MS, in which samples of culture media are 7,23,34,35 METABOLIC FOOTPRINTING humans ) secrete a large number of metabolites injected directly into an electrospray ionization mass A strategy for analysing the into their external environment (especially under con- spectrometer. To maximize the excretion of metabo- properties of cells or tissues by ditions of unbalanced growth). Fermented beverages lites, overflow
Recommended publications
  • Models of Biological Regulation
    Models of Biological Regulation by Moritz Emanuel Beber A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Bioinformatics Approved Dissertation Committee: Prof. Dr. Marc-Thorsten Hütt (chair), Jacobs University Bremen Prof. Dr. Georgi Muskhelishvili, Jacobs University Bremen Prof. Dr.-Ing. Katja Windt, Jacobs University Bremen Prof. Dr. Stefan Bornholdt (external), Universität Bremen Date of Defense: April 17, 2015 Department of Life Sciences & Chemistry iii Statutory Declaration I, Moritz Emanuel Beber, hereby declare, under penalty of perjury, that I am aware of the consequences of a deliberately or negligently wrongly submitted affidavit, in particular the punitive provisions of § 156 and § 161 of the Criminal Code (up to 1 year imprisonment or a fine at delivering a negligent or 3 years or a fine at a knowingly false affidavit). Furthermore I declare that I have written this PhD thesis independently, unless where clearly stated otherwise. I have used only the sources, the data and the support that I have clearly mentioned. This PhD thesis has not been submitted for the conferral of a degree elsewhere. Bremen, July 11, 2017 .................................................................................. Moritz Beber iv Preface The following people deserve my sincerest thanks, more so than I can express in words. There are others whom I do not mention here but also deserve my thanks, please know that you are appreciated nonetheless. First and foremost, I thank my family for showing me, time and again, their unconditional love. Without you I simply would not be here! In particular, I thank my mother Katinka and father Thomas for being calm and analytical when I needed them to but otherwise placing their complete trust in me to go my own way.
    [Show full text]
  • 8Th Conference AM.Pdf
    Measuring the interplay between uptake and loss processes of xenobiotics 13th June 2019 Maddalena Bronzato Physical Chemistry Chemical Technologies & Operations Group Chemical Research, Jealott’s Hill Understanding losses from a foliar surface Volatilisation 2 Why is pesticide volatility so important? ● Environmental fate (loss and persistence) ● Registrability ● Activity (vapour activity and volatility as a benefit) Vapour activity on Aphids Powdery mildew on Fruit Environmental fate 3 Understanding losses from a foliar surface Volatilisation Photodegradation 4 Why is pesticide photodegradation important? ● Activity (photodegradation is one of most destructive post-application pathways) ● Environmental fate (product and persistence) ● Marketability ● Registrability Pesticide sprayed on leaf surface 5 In lab test for volatility and photodegradation Photodegradation Suntest Volatilisation Wind Tunnel 6 Testing for photodegradation - Suntest ● Atlas XLS+ Suntest ● UV-filtered xenon lamp ● Mimics sunlight intensity & spectrum ● Irradiance set to 750W/m2 ● Thermostated baseplate (circulating water @ 15ºC → baseplate ≈ 20 ± 3ºC) 7 Test for volatility- The Wind Tunnel ● Very sample-efficient means of estimating vapour pressure (typically <100µg)] ● Studies are normally run at 40C with a standard wind speed of 1m/s (no control of the R.H.) 8 Photodegradation and volatility test – glass as substrate Pros: ● Good proxy for foliar surface ● Uniform, clean substrate to use for the tests ● High-throughput test ● Worst case scenario ● Indicative but imperfect Limitations: ● Different polarity and morphology between glass and leaves–> differences in redistribution mechanism and deposit shape? 9 SEM images of leaf and glass surfaces Glass 10 Surface redistribution mechanisms Volatilisation Photodegradation Vapour Phase Redistribution 11 Different deposit – effect on photodegradation and volatility Crystalline Amorphous A highly crystalline deposit The larger the deposit area, the faster the compound volatilises.
    [Show full text]
  • The Implementation of Open Access Oral and Written Evidence Contents 1994 Group – Written Evidence
    SCIENCE AND TECHNOLOGY SELECT COMMITTEE The implementation of open access Oral and Written evidence Contents 1994 Group – Written evidence ............................................................................................................. 5 Academy of Social Sciences – Written evidence ................................................................................. 8 Association for Learning Technology (ALT) – Written evidence ................................................. 13 Association of Learned and Professional Society Publishers (ALPSP) – Written evidence .... 19 Jeffrey Beall, Scholarly Initiatives Librarian, University of Colorado Denver – Written evidence ...................................................................................................................................................... 24 Dr Rick Bradford – Written evidence ................................................................................................ 25 British Academy – Written evidence .................................................................................................. 27 British Heart Foundation (BHF) – Written evidence ...................................................................... 32 British Medical Journal Group (BMJ) – Written evidence .............................................................. 34 British Psychological Society (BPS) – Written evidence ................................................................. 38 British Sociological Association (BSA) – Written evidence...........................................................
    [Show full text]
  • Download Download
    Journal of Artificial Intelligence Research 32 (2008) 825{877 Submitted 06/07; published 08/08 Qualitative System Identification from Imperfect Data George M. Coghill [email protected] School of Natural and Computing Sciences University of Aberdeen, Aberdeen, AB24 3UE. UK. Ashwin Srinivasan [email protected] IBM India Research Laboratory 4, Block C, Institutional Area Vasant Kunj Phase II, New Delhi 110070, India. and Department of CSE and Centre for Health Informatics University of New South Wales, Kensington Sydney, Australia. Ross D. King [email protected] Deptartment of Computer Science University of Wales, Aberystwyth, SY23 3DB. UK. Abstract Experience in the physical sciences suggests that the only realistic means of under- standing complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the param- eters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these prob- lems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understand- ing the essence of that model.
    [Show full text]
  • Rebecca Darley, Daniel Reynolds and Chris Wickham Open Access Journals in Humanities and Social Science a British Academy Research Project
    OPEN ACCESS JOURNALS IN HUMANITIES AND SOCIAL SCIENCE Rebecca Darley, Daniel Reynolds and Chris Wickham Open access journals in Humanities and Social Science A British Academy Research Project Rebecca Darley, Daniel Reynolds and Chris Wickham The British Academy 2014 THE BRITISH ACADEMY 10–11 Carlton House Terrace London SW1Y 5AH Website: www.britac.ac.uk Registered Charity, No. 233176 © 2014 the contributors This text is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. ISBN 978-0-85672-614-9 Contents Open access journals in Humanities and Social Science: summary 4 1. Introduction and context 10 2. UK Humanities and Social Science journal publishing and its international face 24 3. The open access policies of journals outside the UK 36 4. Journal half-lives and their implications 49 5. The viability of journals in an open-access context 67 6. Who should pay for publishing? 78 7. Conclusions 88 Appendix A 95 Appendix B 100 Appendix C 103 4 Open access journals in Humanities and Social Science Open access journals in Humanities and Social Science: summary Open access journals in Humanities and Social Science, published 2014 by the British Academy Open access journals in Humanities and Social Science: summary 5 Introduction • This British Academy research project on the effects of current UK open access policies was funded by the Higher Education Funding Council for England (HEFCE) and was overseen by a Steering Committee set up by the Academy to manage the project. The project was led by Professor Chris Wickham, FBA (British Academy Vice-President, Publications), with support and co-writing from Dr Rebecca Darley and Dr Daniel Reynolds.
    [Show full text]
  • Annual Review 2014.Qxp Layout 1 15/01/2015 12:10 Page 1
    M1251 Annual Review 2014.qxp_Layout 1 15/01/2015 12:10 Page 1 AnnuAl Review 2013/14 M1251 Annual Review 2014.qxp_Layout 1 15/01/2015 12:10 Page 2 Review of the yeAR is was a year in which we took significant steps towards achieving some of our strategic goals. At the same time, we were able to identify those areas where we need to do more work to meet our very ambitious targets. Contents News 2 Feature 6 Research 8 Culture and community 10 People 12 Facts and figures 16 Professor Dame Nancy Rothwell NEWS FEATURE RESEARCH Alan Gilbert Learning Commons Global challenges, Graphene paints a 2 scoops Guardian University Award 6 Manchester solutions 8 corrosion-free future M1251 Annual Review 2014.qxp_Layout 1 15/01/2015 12:10 Page 1 Annual Review 2013/14 01 It was very pleasing that we generated an therefore, that the number of students in positive initiative to help local unemployed people to operating surplus for the year of £45 million. graduate destinations has increased. prepare for and return to work, either with the Generating an operating surplus is crucial for the University or with local employers, has been huge. University in order to invest in our priority activities. There remains work to do to reach our targeted We made 773 appointments, putting us ahead of position in the upper quartile of NSS results of the our two-year target with a year still to go and In terms of the research agenda, 2013/14 was Russell Group. I was delighted that one of our bringing the number of new appointments since dominated by preparing our submission for the largest investments in the student experience, the programme’s launch to 1,931.
    [Show full text]
  • Scholarly Open Access
    10/4/13 LIST OF PUBLISHERS | Scholarly Open Access Scholarly Open Access Critical analysis of scholarly open-access publishing LIST OF PUBLISHERS Beall’s List: Potential, possible, or probable predatory scholarly open- access publishers This is a list of questionable, scholarly open-access publishers. We recommend that scholars read the available reviews, assessments and descriptions provided here, and then decide for themselves whether they want to submit articles, serve as editors or on editorial boards. The criteria for determining predatory publishers are here (http://wp.me/p280Ch-g5). We hope that tenure and promotion committees can also decide for themselves how importantly or not to rate articles published in these journals in the context of their own institutional standards and/or geocultural locus. We emphasize that journal publishers and journals change in their business and editorial practices over time. This list is kept up-to-date to the best extent possible but may not reflect sudden, unreported, or unknown enhancements. o Abhinav (http://www.abhinavjournal.com/index.aspx) o A M Publishers (http://ampublisher.com/index.html) o Academe Research Journals (http://www.academeresearchjournals.org) o Academia Publishing (http://academiapublishing.org/index.htm) o Academic and Business Research Institute (http://www.aabri.com/) o Academic and Scientific Publishing (http://acascipub.com/) o Academic Journals (http://www.academicjournals.org/) o Academic Journals and Research ACJAR (http://www.acjar.org/index.html) o Academic Journals,
    [Show full text]
  • Appendices Emerging Biotechnologies
    Appendices Emerging biotechnologies Appendix 1: Method of working Background The Nuffield Council on Bioethics established the Working Party on ‗Emerging biotechnologies‘ in January 2011. The Working Party met eleven times over a period of 18 months. In order to inform its deliberations, it held an open consultation and a series of 'fact-finding‘ meetings with external stakeholders and invited experts. It also commissioned two reports on topics relevant to the work of the project and received comments on a draft of the Report from 12 external reviewers. Further details of each of these aspects of the Working Party‘s work are given below and in Appendix 2. The Working Party would like to express its gratitude to all those involved for the invaluable contribution they made to the development of the final Report. Consultation document The Working Party launched a consultation in April 2011, which ran until July 2011. 84 responses were received, of which 48 were submitted by individuals and 36 on behalf of organisations. Those responding to the consultation included students, academics, faith groups and professional organisations. A full list of those responding is set out in Appendix 2. A summary of the responses is available on the Council‘s website. Copies of individual responses will also be made available on the website in those instances where the Council has permission from respondents to do so. Fact-finding As part of its work, the Working Party held a series of 'fact-finding‘ meetings, the details of which can be found below. (Details
    [Show full text]
  • The Value of the Literary and Historical Study of Biology to Biologists a Scoping Study
    The value of the Literary and Historical study of Biology to Biologists a scoping study The value of the Literary and Historical study of Biology to Biologists a scoping study Principal Investigator Professor Nicholas Battey Co-Investigators Dr John Holmes Professor Françoise Le Saux Professor Karín Lesnik-Oberstein Dr David Stack Research Fellow Dr Rachel Crossland Sponsored by the Arts and Humanities Research Council Executive summary The aim of this study is to establish whether and how far work on biology within the humanities – particularly history, literary criticism and critical theory – may be of value to practising biologists. The study is comprised of two main parts: a review of the existing literature on biology within these disciplines, particularly where it seeks to engage directly with biologists; a report on a workshop, attended by 30 biologists, at which the participants were introduced to different humanities approaches to biology, asked to consider how relevant and/or useful they might be to their own work, and invited to think about how biologists might work with humanities academics and/or techniques in research, teaching, museum curating and textual analysis. The key findings of this study are: that there is marked interest in humanities research on biology among a sizeable group of biologists; that there is enthusiasm for research collaboration between the humanities and biology on both sides, that such collaboration should be on equal terms and that it would be mutually beneficial; that the main obstacles to
    [Show full text]
  • Large-Scale Data Sharing in the Life Sciences: Data Standards, Incentives, Barriers and Funding Models (The “Joint Data Standards Study”)
    Large-scale data sharing in the life sciences: Data standards, incentives, barriers and funding models (The “Joint Data Standards Study”) Prepared for The Biotechnology and Biological Sciences Research Council The Department of Trade and Industry The Joint Information Systems Committee for Support for Research The Medical Research Council The Natural Environment Research Council The Wellcome Trust Prepared by The Digital Archiving Consultancy (DAC) The Bioinformatics Research Centre, University of Glasgow (BRC) The National e-Science Centre (NeSC) August 2005 Large-scale data sharing in the life sciences 2 Table of contents VOLUME 1 - Report Page Abbreviations 4 Acknowledgements 5 Executive summary 8 PART 1 1. Background to report 13 2. Method 14 3. Key concepts 17 PART 2 Findings: general introduction 20 4. Technical issues 21 5. Tools 27 6. Standards 33 7. Planning and management over the data life cycle 37 8. Nature of content 45 9. Organisational and management issues 50 10. Culture and careers 55 11. Support, training and awareness 59 12. Legal, regulatory, and rights management issues 61 13. Corporate sector 64 14. International issues 68 PART 3 15. Core models for data sharing 71 Large-scale data sharing in the life sciences 3 VOLUME 2 – Appendices Page Appendix 1: Bibliography A-2 Appendix 2: Glossary A-10 Appendix 3: Case studies A-19 Case study 1: Arts & Humanities Data Service A-23 Case study 2: BADC / NERC DataGrid A-29 Case study 3: BRIDGES A-38 Case study 4: CLEF A-47 Case study 5: Common Data Access A-54 Case study 6: Ensembl
    [Show full text]
  • Systems Biology: from Molecules to Life Gosau, Austria, EU, March 10-16, 2007
    FEBSSysBio2007: Advanced Lecture Course on Systems Biology, Gosau 2nd FEBS Advanced Lecture Course on Systems Biology: From Molecules to Life Gosau, Austria, EU, March 10-16, 2007 Organizers Karl Kuchler Medical University Vienna Max F. Perutz Laboratories Campus Vienna Biocenter Edda Klipp Computational Systems Biology Max-Planck Institute for Molecular Genetics Berlin Uwe Sauer Institute for Molecular Systems Biology ETH Zürich Hans V. Westerhoff (program chair) AstraZeneca Chair for Systems Biology, Manchester Centre of Integrative Systems Biology, The University of Manchester and Department of Molecular Cell Physiology, Netherlands Institute for Systems Biology, Free University Amsterdam Anneke (J.G.) Koster (course secretary) Institute for Systems Biology Amsterdam Walter Glaser (IT) Medical University Vienna Max F. Perutz Laboratories Campus Vienna Biocenter Introduction FEBSSysBio2007: Advanced Lecture Course on Systems Biology, Gosau Teachers Alan Aderem Jeroen Jeneson Steve Oliver Lilia Alberghina Tom Kirkwood Johan Paulsson Judy Armitage Hiroaki Kitano Uwe Sauer Barbara Bakker Ursula Klingmüller Johannes Schlöder Frank Bruggeman Edda Klipp Guy Shinar Marta Cascante Karl Kuchler Jacky Snoep Marileen Dogterom Ursula Kummer Jaroslav Stark Måns Ehrenberg Doug Lauffenburger Jens Timmer Igor Goryanin Hans Meinhardt Hans van Leeuwen Adriano Henney Erik Mosekilde Nathal van Riel Jannie Hofmeyr Bela Novak Hans V. Westerhoff Leroy Hood Jens Nielsen Other Members of the Scientific Advisory Board Ruedi Aebersold Douglas Kell Roel van Driel
    [Show full text]
  • Prof. Douglas Kell, School of Chemistry, and the Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, MANCHESTER M1 7DN, U.K
    Prof. Douglas Kell, School of Chemistry, and The Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, MANCHESTER M1 7DN, U.K. Tel: 0161 306 4492 Fax: 0161 306 4556 [email protected] http://dbkgroup.org 31/01/2009 TO WHOM IT MAY CONCERN myExperiment Enhancement Proposal I am very pleased to know that an opportunity has risen for the continued funding of the myExperiment project. myExperiment provides an important resource by supporting new types of digital items such as workflows, and has also demonstrated to the community the value of taking a social network approach which facilitates discovery, sharing and curation rather than simply making items available in a repository. The project gives an important insight into supporting the new forms of research practice that are already being adopted by the next generation of researchers. I am pleased to be able to write in support of the myExperiment enhancement proposal. I have followed this work from the very beginning, and the idea (and utility) of sharing workflows is absolutely crucial to rolling out the ‘bioinformatics for everyone who cannot program’ agenda. I say this as an early adopter myself (see e.g. Kell, D. B. (2006). Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher lecture. FEBS J 273, 873-894), and as someone who has hosted some of the myExperiment team in my lab so that they can see how ‘working biologists’ approach their experiments (both wet and dry). Indeed my group has contributed a considerable number of workflows to the myExperiment repositories, including some referred to in the following recent papers: Li, P., Oinn, T., Soiland, S.
    [Show full text]