International Journal of Pure and Applied Mathematics ————————————————————————– Volume 55 No. 2 2009, 247-256 THE HANKEL CONVOLUTION OF ARBITRARY ORDER C.K. Li Department of Mathematics and Computer Science Brandon University Brandon, Manitoba, R7A 6A9, CANADA e-mail:
[email protected] Abstract: Let µ> 1/2. The classical Hankel transform is defined by − ∞ (hµφ)(t)= xJµ(xt)φ(x)dx t (0, ), (1) Z0 ∈ ∞ where Jµ(x) denotes the Bessel function of the first kind and order µ. The goal of this paper is to construct the Hankel transform of arbitrary order hµ,k based −1 on the two differential operators and show that hµ,k = h on H 1 for µ R. µ,k µ− 2 ∈ Furthermore, the Hankel convolution of arbitrary order is introduced with the following identity −µ (hµ,kh)(t)= t (hµ,kφ)(t)(hµ,kψ)(t) on the spaces (H 1 , H 1 ) and (Sµ, H 1 ) respectively. µ− 2 µ− 2 µ− 2 AMS Subject Classification: 46F12 Key Words: Hankel transform, Bessel function, Hankel convolution and automorphism 1. Introduction Let R+ = (0, ) and a weight function ν(x) > 0 in R+. We define a set of ∞ functions L(R+,ν(x)) as ∞ L(R+,ν(x)) = f(x) f(x) ν(x)dx < . { | Z0 | | ∞} Different types of the Hankel transforms as well as their convolutions, including modified ones, have been investigated over the decades (for example, see [7]- Received: August 1, 2009 c 2009 Academic Publications 248 C.K. Li [5] and [1]) both in the classical sense and in spaces of generalized functions.