Naol Tufa Negero / International Journal of Modern Sciences and Engineering Technology (IJMSET) ISSN 2349-3755; Available at https://www.ijmset.com Volume 3, Issue 10, 2016, pp.24-36 Zero-Order Hankel Transform Method for Partial Differential Equations Naol Tufa Negero Faculty of Natural and Computational Science, Department of Mathematics, Wollega University, Nekemte,Ethiopia.
[email protected] Abstract This paper deals with the solution of Partial Differential Equations (PDEs) by the method of Hankel transform. Firstly, Hankel transforms is derived using two dimensional Fourier transform, next its properties are presented because their results are used widely in solving partial differential equations in the polar and axisymmetric cylindrical configurations, finally it applied to partial differential equation with precise formulation of initial and boundary value problems. In this article, we use the Hankel transforms method, namely Hankel transforms of zero order and of order one are introduced, such that PDE reduced to an ODE, which can be subsequently solved using ODE techniques which involves the Bessel functions. Moreover the main result of this paper is the zero-order Hankel transform method for Partial differential equations in unbounded problems with radial symmetry that is appropriate in the polar and cylindrical coordinates, which is analyzed in some detail. Keywords: Radial Fourier transforms, Two Dimensional Fourier Transform, Polar, Cylindrical and spherical Coordinates, Zero-Order Hankel Transform, Partial Differential Equations 1. INTRODUCTION: There are several integral transforms which are frequently used as a tool for solving numerous scientific problems. In many real applications, Fourier transforms as well as Mellin transforms and Hankel transforms are all very useful.