A Technique for Solving the Singular Integral Equations of Potential Theory

Total Page:16

File Type:pdf, Size:1020Kb

A Technique for Solving the Singular Integral Equations of Potential Theory Old Dominion University ODU Digital Commons Mathematics & Statistics Theses & Dissertations Mathematics & Statistics Spring 2007 A Technique for Solving the Singular Integral Equations of Potential Theory Brian George Burns Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds Part of the Mathematics Commons Recommended Citation Burns, Brian G.. "A Technique for Solving the Singular Integral Equations of Potential Theory" (2007). Doctor of Philosophy (PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/q9kv-0x34 https://digitalcommons.odu.edu/mathstat_etds/6 This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. A TECHNIQUE FOR SOLVING THE SINGULAR INTEGRAL EQUATIONS OF POTENTIAL THEORY by Brian George Burns M.Sci. 1998, University of Glasgow M.Sc. 1999, University of Stirling M.S. 2005, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY COMPUTATIONAL AND APPLIED MATHEMATICS OLD DOMINION UNIVERSITY May 2007 John Tweed (Director) Ion Melrose John/A. Adam Richard D. Noren Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT A TECHNIQUE FOR SOLVING THE SINGULAR INTEGRAL EQUATIONS OF POTENTIAL THEORY Brian George Burns Old Dominion University, 2007 Director: Dr. John Tweed The singular integral equations of Potential Theory are investigated using ideas from both classical and contemporary mathematics. The goal of this semi-analytic ap­ proach is to produce numerical schemes that are both general and computationally simple. Previous works based on classical methods have yielded solutions only for very special cases while contemporary methods such as finite differences, finite el­ ements and boundary element techniques are computationally extensive. Since the two-dimensional integral equations of interest exhibit structural invariance under a wide class of conformal mappings initial emphasis is placed on circular domains. By Fourier expansion with respect to the angular variable, such two-dimensional integral equations yield simultaneous systems of one-dimensional integral equations that, in many cases, uncouple. Integral transform techniques and classical function theory are used to identify the eigenfunctions associated with the dominant parts of the one­ dimensional singular equations. Hilbert spaces spanned by these eigenfunctions are then constructed and an operator theory developed for the general class of integral equations. Numerical algorithms are derived for both Galerkin and collocation solu­ tion techniques with convergence proved in the Galerkin case and collocation method verified experimentally. A generalization of the Hilbert space theory is then applied to the two-dimensional case with eigenfunctions created by combining the angular Fourier terms with the radial eigenfunctions of the dominant one-dimensional parts. Numerical algorithms based Galerkin and collocation methods are again derived and used to solve the two-dimensional equations. The techniques developed are used to solve a number of both previously known and new problems in Electrostatics and Fracture Mechanics. Simple layer potential representations yield weakly singular in­ tegral equations for the induced charge on disc shaped conductors that are placed in an electrostatic field. Similarly, double layer potentials yield hyper-singular integral equations for the crack opening displacement of penny shaped cracks in an elastic Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. solid under various loading conditions. Conformal mapping techniques for solving problems on non-circular domains are also briefly discussed as are extensions to fields that are governed by the Helmholtz Equation. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS Thanks and appreciation go out to all of my committee members for being part of this project and taking the time to read this rather long and detailed document. So appreciation and thanks to Professor James Cox of the Physics Department for being my external committee member. Thanks to Dr. Richard Noren for becoming the final department member. Thanks to Professor Adam for taking time from his busy schedule as a Virginian Outstanding Faculty to provide not only creditability to my thesis but also a significant source of humor. Thanks to Dr. Melrose for his service as a teacher, a supervisor and especially being the inspiration and encouragement behind my coming to the US and Old Dominion in particular. Special thanks go out to Professor Tweed who has been an inspirational advisor and mentor whose patience has held strong at all times despite being tested by my stubbornness and occasional lack of attention to detail. I could not have asked for any more in an advisor than what Professor Tweed provided. I must also thank Professor Hideaki Kaneko and in particular Professor Mark Dorrepaal for their support in finishing my dissertation both financial and in their efforts freeing up my teaching commitments to facilitate my dissertation completion. Special thanks too to Dr. Humberto Rocha for all his help and support both while a colleague at Old Dominion and since his return to Portugal. In particular his help with Latex and formatting was invaluable. I would also like to thank my family for all their moral and occasional financial support through my hardships as a graduate student. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vi TABLE OF CONTENTS Page List of Tables ................................................................................................................. ix List of Figures .............................................................................................................. xii CHAPTERS I Introduction .......................................................................................................... 1 II Preliminary Results ............................................................................................. 6 II. 1 Weber-Schafheitlin Integrals .................................................................... 6 II.2 Layer Potential Solutions to Laplacian Boundary Value Problems . 11 11.2.1 The Three-Dimensional Green’s Functions ................................ 12 11.2.2 The Single Layer Potential Operator .......................................... 12 11.2.3 The Double Layer Potential O perator ....................................... 14 11.2.4 The Dirichlet Problem .................................................................... 15 11.2.5 The Neumann Problem ................................................................ 16 III Hilbert Spaces I ................................................................................................... 18 III.l Introduction .............................................................................................. 18 111.2 The Hilbert Spaces L?! ( 0 ,1 ) ..................................................................... 18 111.3 Operators on the L% (0,1) Hilbert Spaces ............................................. 23 111.3.1 The L" Operators .......................................................................... 24 111.3.2 The Differential (®m) and the Hyper-Singular (BmL^) Oper­ ators ................................................................................................. 37 111.4 The (0,1) Hilbert Spaces ................................................................. 40 IV A Weakly-Singular Integral Equation ............................................................. 49 IV. 1 Introduction .............................................................................................. 49 IV. 2 The Dominant Weakly-Singular E quation ........................................... 49 IV. 3 The General E q u a tio n .............................................................................. 50 IV.4 Numerical Solutions .................................................................................. 58 IV.4.1 Q uadrature........................................................................................ 58 IV.4.2 The Galerkin M ethod .................................................................... 59 IV.4.3 The Collocation Method .............................................................. 60 IV.4.4 Numerical T ests .............................................................................. 61 V A Hyper-Singular Integral Equation ................................................................ 63 V.l Introduction .............................................................................................. 63 V.2 The Dominant Hyper-Singular Equation .............................................. 63 V.3 The General Hyper-Singular Equation ................................................. 64 V.4 Numerical Solutions .................................................................................. 6 8 V.4.1 Q uadrature.......................................................................................
Recommended publications
  • Arxiv:1507.07356V2 [Math.AP]
    TEN EQUIVALENT DEFINITIONS OF THE FRACTIONAL LAPLACE OPERATOR MATEUSZ KWAŚNICKI Abstract. This article discusses several definitions of the fractional Laplace operator ( ∆)α/2 (α (0, 2)) in Rd (d 1), also known as the Riesz fractional derivative − ∈ ≥ operator, as an operator on Lebesgue spaces L p (p [1, )), on the space C0 of ∈ ∞ continuous functions vanishing at infinity and on the space Cbu of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner’s subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain. 1. Introduction We consider the fractional Laplace operator L = ( ∆)α/2 in Rd, with α (0, 2) and d 1, 2, ... Numerous definitions of L can be found− in− literature: as a Fourier∈ multiplier with∈{ symbol} ξ α, as a fractional power in the sense of Bochner or Balakrishnan, as the inverse of the−| Riesz| potential operator, as a singular integral operator, as an operator associated to an appropriate Dirichlet form, as an infinitesimal generator of an appropriate semigroup of contractions, or as the Dirichlet-to-Neumann operator for an appropriate harmonic extension problem. Equivalence of these definitions for sufficiently smooth functions is well-known and easy. The purpose of this article is to prove that, whenever meaningful, all these definitions are equivalent in the Lebesgue space L p for p [1, ), ∈ ∞ in the space C0 of continuous functions vanishing at infinity, and in the space Cbu of bounded uniformly continuous functions.
    [Show full text]
  • Some Schemata for Applications of the Integral Transforms of Mathematical Physics
    mathematics Review Some Schemata for Applications of the Integral Transforms of Mathematical Physics Yuri Luchko Department of Mathematics, Physics, and Chemistry, Beuth University of Applied Sciences Berlin, Luxemburger Str. 10, 13353 Berlin, Germany; [email protected] Received: 18 January 2019; Accepted: 5 March 2019; Published: 12 March 2019 Abstract: In this survey article, some schemata for applications of the integral transforms of mathematical physics are presented. First, integral transforms of mathematical physics are defined by using the notions of the inverse transforms and generating operators. The convolutions and generating operators of the integral transforms of mathematical physics are closely connected with the integral, differential, and integro-differential equations that can be solved by means of the corresponding integral transforms. Another important technique for applications of the integral transforms is the Mikusinski-type operational calculi that are also discussed in the article. The general schemata for applications of the integral transforms of mathematical physics are illustrated on an example of the Laplace integral transform. Finally, the Mellin integral transform and its basic properties and applications are briefly discussed. Keywords: integral transforms; Laplace integral transform; transmutation operator; generating operator; integral equations; differential equations; operational calculus of Mikusinski type; Mellin integral transform MSC: 45-02; 33C60; 44A10; 44A15; 44A20; 44A45; 45A05; 45E10; 45J05 1. Introduction In this survey article, we discuss some schemata for applications of the integral transforms of mathematical physics to differential, integral, and integro-differential equations, and in the theory of special functions. The literature devoted to this subject is huge and includes many books and reams of papers.
    [Show full text]
  • Integral Equation for the Number of Integer Points in a Circle
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS { N. 41{2019 (522{525) 522 INTEGRAL EQUATION FOR THE NUMBER OF INTEGER POINTS IN A CIRCLE Magomed A. Chakhkiev Gagik S. Sulyan Manya A. Ziroyan Department of Applied Mathematics Social State University of Russia Wilhelm Pieck St. 4, Moscow Russian Federation Nikolay P. Tretyakov Department of Applied Mathematics Social State University of Russia Wilhelm Pieck St. 4, Moscow Russian Federation and School of Public Policy The Russian Presidential Academy of National Economy and Public Administration Prospect Vernadskogo, 84, Moscow 119571 Russian Federation Saif A. Mouhammad∗ Department of Physics Faculty of Science Taif University Taif, AL-Haweiah Kingdom of Saudi Arabia [email protected] Abstract. The problem is to obtain the most accurate upper estimate for the absolute value of the difference between the number of integer points in a circle and its area (when the radius tends to infinity). In this paper we obtain an integral equation for the function expressing the dependence of the number of integer points in a circle on its radius. The kernel of the equation contains the Bessel functions of the first kind, and the equation itself is a kind of the Hankel transform. Keywords: Gauss circle problem, integral equation, Hankel transform. 1. The problem and calculations The Gauss circle problem is the problem of determining how many integer lattice points there are in a circle centered at the origin andp with given radius. Let us consider the circle K(R): x2 + y2 ≤ R and let A( R) be the number of ∗. Corresponding author INTEGRAL EQUATION FOR THE NUMBER OF INTEGER POINTS IN A CIRCLE 523 p points with integer coordinates within this circle.
    [Show full text]
  • Laplace Transforms: Theory, Problems, and Solutions
    Laplace Transforms: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 43 The Laplace Transform: Basic Definitions and Results 3 44 Further Studies of Laplace Transform 15 45 The Laplace Transform and the Method of Partial Fractions 28 46 Laplace Transforms of Periodic Functions 35 47 Convolution Integrals 45 48 The Dirac Delta Function and Impulse Response 53 49 Solving Systems of Differential Equations Using Laplace Trans- form 61 50 Solutions to Problems 68 2 43 The Laplace Transform: Basic Definitions and Results Laplace transform is yet another operational tool for solving constant coeffi- cients linear differential equations. The process of solution consists of three main steps: • The given \hard" problem is transformed into a \simple" equation. • This simple equation is solved by purely algebraic manipulations. • The solution of the simple equation is transformed back to obtain the so- lution of the given problem. In this way the Laplace transformation reduces the problem of solving a dif- ferential equation to an algebraic problem. The third step is made easier by tables, whose role is similar to that of integral tables in integration. The above procedure can be summarized by Figure 43.1 Figure 43.1 In this section we introduce the concept of Laplace transform and discuss some of its properties. The Laplace transform is defined in the following way. Let f(t) be defined for t ≥ 0: Then the Laplace transform of f; which is denoted by L[f(t)] or by F (s), is defined by the following equation Z T Z 1 L[f(t)] = F (s) = lim f(t)e−stdt = f(t)e−stdt T !1 0 0 The integral which defined a Laplace transform is an improper integral.
    [Show full text]
  • Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional Pdes
    Gen. Math. Notes, Vol. 14, No. 1, January 2013, pp. 6-20 ISSN 2219-7184; Copyright © ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs A. Aghili 1 and H. Zeinali 2 1,2 Department of Applied Mathematics Faculty of Mathematical Sciences, University of Guilan, P.O. Box- 1841, Rasht – Iran 1E-mail: [email protected] 2E-mail: [email protected] (Received: 8-10-12 / Accepted: 19-11-12) Abstract In this work, the authors implemented Laplace transform method for solving certain partial fractional differential equations and Volterra singular integral equations. Constructive examples are also provided to illustrate the ideas. The result reveals that the transform method is very convenient and effective. Keywords : Non-homogeneous time fractional heat equations; Laplace transform; Volterra singular integral equations. 1 Introduction In this work, the authors used Laplace transform for solving Volterra singular integral equations and PFDEs. Solution to Volterra Singular Integral… 7 The Laplace transform is an alternative method for solving different types of PDEs. Also it is commonly used to solve electrical circuit and systems problems. In this work, the authors implemented transform method for solving the partial fractional heat equation which arise in applications. Several methods have been introduced to solve fractional differential equations, the popular Laplace transform method, [ 1 ] , [ 2 ] , [ 3 ], [ 4 ] , and operational method [ 10]. However, most of these methods are suitable for special types of fractional differential equations, mainly the linear with constant coefficients. More detailed information about some of these results can be found in a survey paper by Kilbas and Trujillo [10].
    [Show full text]
  • Singular Integrals on Self-Similar Sets and Removability for Lipschitz Harmonic Functions in Heisenberg Groups
    SINGULAR INTEGRALS ON SELF-SIMILAR SETS AND REMOVABILITY FOR LIPSCHITZ HARMONIC FUNCTIONS IN HEISENBERG GROUPS VASILIS CHOUSIONIS AND PERTTI MATTILA Abstract. In this paper we study singular integrals on small (that is, measure zero and lower than full dimensional) subsets of metric groups. The main examples of the groups we have in mind are Euclidean spaces and Heisenberg groups. In addition to obtaining results in a very general setting, the purpose of this work is twofold; we shall extend some results in Euclidean spaces to more general kernels than previously considered, and we shall obtain in Heisenberg groups some applications to harmonic (in the Heisenberg sense) functions of some results known earlier in Euclidean spaces. 1. Introduction The Cauchy singular integral operator on one-dimensional subsets of the complex plane has been studied extensively for a long time with many applications to analytic functions, in particular to analytic capacity and removable sets of bounded analytic functions. There have also been many investigations of the same kind for the Riesz singular integral op- erators with the kernel x=jxj−m−1 on m-dimensional subsets of Rn. One of the general themes has been that boundedness properties of these singular integral operators imply some geometric regularity properties of the underlying sets, see, e.g., [DS], [M1], [M3], [Pa], [T2] and [M5]. Standard self-similar Cantor sets have often served as examples where such results were first established. This tradition was started by Garnett in [G1] and Ivanov in [I1] who used them as examples of removable sets for bounded analytic functions with positive length.
    [Show full text]
  • Math 551 Lecture Notes Fredholm Integral Equations (A Brief Introduction)
    MATH 551 LECTURE NOTES FREDHOLM INTEGRAL EQUATIONS (A BRIEF INTRODUCTION) Topics covered • Fredholm integral operators ◦ Integral equations (Volterra vs. Fredholm) ◦ Eigenfunctions for separable kernels ◦ Adjoint operator, symmetric kernels • Solution procedure (separable) ◦ Solution via eigenfunctions (first and second kind) ◦ Shortcuts: undetermined coefficients ◦ An example (separable kernel, n = 2) • Non-separable kernels (briefly) ◦ Hilbert-Schmidt theory Preface Read the Fredholm alternative notes before proceeding. This is covered in the book (Section 9.4), but the material on integral equations is not. For references on integral equa- tions (and other topics covered in the book too!), see: • Riley and Hobson, Mathematical methods for physics and engineering (this is an extensive reference, also for other topics in the course) • Guenther and Lee, Partial differential equations of mathematical physics and integral equations (more technical; not the best first reference) • J.D. Logan, Applied mathematics (more generally about applied mathematics tech- niques, with a good section on integral equations) 1. Fredholm integral equations: introduction Differential equations Lu = f are a subset of more general equations involving linear op- erators L. Here, we give a brief treatment of a generalization to integral equations. To motivate this, every ODE IVP can be written as an `integral equation' by integrating. For instance, consider the first order IVP du = f(x; u(x)); u(a) = u : (1.1) dx 0 Integrate both sides from a to x to get the integral equation Z x u(x) = u0 + f(s; u(s)) ds: (1.2) a If u solves (1.2) then it also solves (1.1); they are `equivalent' in this sense.
    [Show full text]
  • Lecture Notes, Singular Integrals
    Lecture notes, Singular Integrals Joaquim Bruna, UAB May 18, 2016 Chapter 3 The Hilbert transform In this chapter we will study the Hilbert transform. This is a specially important operator for several reasons: • Because of its relationship with summability for Fourier integrals in Lp- norms. • Because it constitutes a link between real and complex analysis • Because it is a model case for the general theory of singular integral op- erators. A main keyword in the theory of singular integrals and in analysis in general is cancellation. We begin with some easy examples of what this means. 3.1 Some objects that exist due to cancellation One main example of something that exists due to cancellation is the Fourier 2 d 2 transform of functions in L (R ). In fact the whole L -theory of the Fourier transform exists thanks to cancellation properties. Let us review for example 1 d 2 d the well-known Parseval's theorem, stating that for f 2 L (R )\L (R ) one has kf^k2 = kfk2, a result that allows to extend the definition of the Fourier 2 d transform to L (R ). Formally, Z Z Z Z jf^(ξ)j2 dξ = f(x)f(y)( e2πiξ·(y−x)dξ)dxdy: Rd Rd Rd Rd This being equal to R jf(x)j2 dx means formally that Rd Z 2πiξ·x e dξ = δ0(x): Rd Along the same lines, let us look at the Fourier inversion theorem, stating 1 d 1 d that whenever f 2 L (R ); f^ 2 L (R ) one has 1 Z f(x) = f^(ξ)e2πiξ·x dξ: Rd Again, the right hand side, by a formal use of Fubini's theorem becomes Z Z Z Z ( f(y)e−2πiξ·y dy)e2πiξ·x dξ = f(y)( e−2πiξ·(y−x) dy) dξ: Rd Rd Rd Rd If this is to be equal to f(x) we arrive to the same formal conclusion, namely that superposition of all frequencies is zero outside zero.
    [Show full text]
  • Chapter 1 Introduction to the Integral Equation(IE) and Construction Of
    Chapter 1 Introduction to the Integral Equation(IE) and Construction of the IE. 1.1. Introduction: Integral Equation began to appear since the mid-seventeenth century , when some scientists were not able to solve the differential equation . The integral equation developed with appear Abel kernel after that Volterra integral equation lastly Fredholm integral equation. In this time we find numerical method played a great role to solve integral equation. Therefore of great progressing in basic science whether physical or engineering has played essential role. Topics on integral equations has grown and evolved to its direct association lists the large branches of mathematics, such as account differential and integrative and questions of boundary conditions. During the twenty-five last year, there is a marked increase in the use of integral equations and formulations for finding scientific solutions to engineering problems and solving differential equations that are difficult to solve by normal methods. In the recent period found that the integral equations give a better solution than give differential equations. The explosive growth in industry and technology requires constructive adjustments in mathematics text researches. The integral equation it equation that appear in the unknown function under signal or more, from the signals of integrity. There more types of integral equation from it linear and nonlinear integral equation. The general formula linear integral equation it is: ١ () = () + (, )() (1 − 1) Where () unknown function, () known function and (, )known function are called kernel integral equation. We say that integral equation it is linear if that which operations on unknown function in equation it linear operations. And the general formula nonlinear integral equation it is : () = () + (, )(()) (1 − 2) Where unknown function it is nonlinear .
    [Show full text]
  • The Solution of Convolution-Typed Volterra Integral Equation by G-Transform
    International Journal of Engineering & Technology, 7 (4) (2018) 6665-6669 International Journal of Engineering & Technology Website: www.sciencepubco.com/index.php/IJET doi: 10.14419/ijet.v7i4.26348 Research paper The solution of convolution-typed Volterra integral equation by G-transform Hwajoon Kim1* and Kamsing Nonlaopon2 1Kyungdong University 2Khon Kaen University *Corresponding author E-mail:[email protected] Abstract We would like to consider the solution of convolution-typed Volterra integral equation by using G-transform, a generalized Laplace-typed transform. The tool of G-transform is analyzed to be well applied to convolution-typed Volterra integral equation. Keywords: initial value problem; G-transform; Volterra integral equation 1. Introduction It is a well-known fact that Volterra integral equation is equivalent to the initial value problem of ordinary differential equation(ODE). Since the tool used to find the solutions in this article is G-transform, a generalized Laplace-typed transform, we would like to check it up first. In a word, G-transform is a comprehensive form of Laplace-typed transform, and this transform has a strong point in the choice of an integer a. This means that we can freely choose a for a variety of problems. The form of Laplace-typed transform is Z ¥ k(s;t) f (t)dt; 0 and Laplace transform has the kernel k(s;t) = e−st as we know already[8]. This Laplace transform can be rewritten as Z ¥ − t e u f (t)dt 0 by s = 1=u, and so we proposed the general form of Laplace-typed transform by Z ¥ a − t u e u f (t)dt 0 as a natural extension[4].
    [Show full text]
  • Estimates for the Maximal Singular Integral in Terms of the Singular Integral: the Case of Even Kernels
    Annals of Mathematics 174 (2011), 1429{1483 http://dx.doi.org/10.4007/annals.2011.174.3.2 Estimates for the maximal singular integral in terms of the singular integral: the case of even kernels By Joan Mateu, Joan Orobitg, and Joan Verdera Abstract Let T be a smooth homogeneous Calder´on-Zygmund singular integral n operator in R . In this paper we study the problem of controlling the max- imal singular integral T ?f by the singular integral T f. The most basic 2 n form of control one may consider is the estimate of the L (R ) norm of ? 2 n T f by a constant times the L (R ) norm of T f. We show that if T is an even higher order Riesz transform, then one has the stronger pointwise inequality T ?f(x) ≤ CM(T f)(x), where C is a constant and M is the Hardy-Littlewood maximal operator. We prove that the L2 estimate of T ? by T is equivalent, for even smooth homogeneous Calder´on-Zygmund operators, to the pointwise inequality between T ? and M(T ). Our main result characterizes the L2 and pointwise inequalities in terms of an alge- Ω(x) braic condition expressed in terms of the kernel jxjn of T , where Ω is an even homogeneous function of degree 0, of class C1(Sn−1) and with zero n−1 integral on the unit sphere S . Let Ω = P Pj be the expansion of Ω in spherical harmonics Pj of degree j. Let A stand for the algebra generated by the identity and the smooth homogeneous Calder´on-Zygmund opera- tors.
    [Show full text]
  • Numerical Solutions of Fredholm Integral Equation of Second Kind Using Piecewise Bernoulli Polynomials
    Numerical Solutions of Fredholm Integral Equation of Second Kind Using Piecewise Bernoulli Polynomials Afroza Shirin1, Md. Shafiqul Islam*2 1Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh. Email: [email protected]. 2Department of Mathematics, University of Dhaka, Dhaka – 1000, Bangladesh *Corresponding author, Email: [email protected] Abstract: The aim of this paper is to solve the integral equations numerically using piecewise Bernoulli polynomials. The Bernoulli polynomials are derived explicitly over the unit interval. A matrix formulation for a non-singular linear Fredholm integral equation of the second kind is derived by the technique of Galerkin method. In the Galerkin method, the Bernoulli polynomials are exploited as the linear combination in the approximation as basis functions. Numerical examples are considered to verify the effectiveness of the proposed derivations. Keywords: Fredholm integral equation, Galerkin method, Bernoulli polynomials, Numerical solutions. I. Introduction In the survey of solutions of integral equations, a large number of analytical but a few approximate methods are available for solving numerically various classes of integral equations [1, 2, 7, 8 ]. Since the piecewise polynomials are differentiable and integrable, the Bernstein polynomials [5 – 8] have been used for solving differential and integral equations numerically. Recently, integral equations have been solved by the well known variational iteration method [9]. In the literature [7], Mandal and Bhattacharya have attempted to solve integral equations numerically using Bernstein polynomials, but they obtained the results in terms of finite series solutions In contrast to this, we solve the linear Fredholm integral equation of the second kind by exploiting very well known Galerkin method, and Bernoulli polynomials [4] are used as trial functions.
    [Show full text]