Blindsight in Action: What Can the Different Sub-Types of Blindsight Tell Us About the Control of Visually Guided Actions?

Total Page:16

File Type:pdf, Size:1020Kb

Blindsight in Action: What Can the Different Sub-Types of Blindsight Tell Us About the Control of Visually Guided Actions? Neuroscience and Biobehavioral Reviews 29 (2005) 1035–1046 www.elsevier.com/locate/neubiorev Review Blindsight in action: what can the different sub-types of blindsight tell us about the control of visually guided actions? James Danckerta,*, Yves Rossettib,c,d aDepartment of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, Ont., Canada N2L 3G1 bEspace et Action, INSERM Unite´ 534 and Universite´ Claude Bernard, 16 Avenue doyen Le´pine, 69676 Bron Cedex, France cService de Re´e´ducation Neurologique, Hoˆpital Henry Gabrielle, Universite´ Claude Bernard and Hospices Civils de Lyon, Route de Vourles, St Genis Laval Cedex, France dInstitut Fe´de´ratif des neurosciences de Lyon, 59 Boulevard Pinel, 69003 Lyon, France Received 27 July 2004; revised 13 December 2004; accepted 7 February 2005 Abstract Blindsight broadly refers to the paradoxical neurological condition where patients with a visual field defect due to a cortical lesion nevertheless demonstrate implicit residual visual sensitivity within their field cut. The aim of this paper is twofold. First, through a selective review of the blindsight literature we propose a new taxonomy for the subtypes of residual abilities described in blindsight. Those patients able to accurately act upon blind field stimuli (e.g. by pointing or saccading towards them) are classified as having ‘action-blindsight’, those whose residual functions can be said to rely to some extent upon attentive processing of blind field stimuli are classified as demonstrating ‘attention-blindsight’, while finally, patients who have somewhat accurate perceptual judgements for blind field stimuli despite a complete lack of any conscious percept, are classified as having ‘agnosopsia’—literally meaning ‘not knowing what one sees’. We also address the possible neurological substrates of these residual sensory processes. Our second aim was to investigate the most striking subtype of blindsight, action-blindsight. We review the data relevant to this subtype and the hypotheses proposed to account for it, before speculating on how action-blindsight may inform our normal models of visuomotor control. q 2005 Elsevier Ltd. All rights reserved. Keywords: Blindsight; Visuomotor control; Parietal cortex Contents 1. Introduction ...................................................................................1035 2. A new taxonomy for residual behaviours in blindsight ....................................................1036 2.1. Parietal cortex and action-blindsight ............................................................1039 2.2. Action-blindsight operates in the here and now ....................................................1041 2.3. ‘Action-blindsight’ and the automatic pilot .......................................................1041 3. Conclusion: action-blindsight—the automatic pilot in slow motion? ..........................................1043 Acknowledgements . .............................................................................1045 References ....................................................................................1045 1. Introduction * Corresponding author. Tel.: C1 519 888 4567x7014; fax: C1 519 734 Blindsight refers to the residual visual abilities that some 8631. patients with visual field defects demonstrate for stimuli E-mail addresses: [email protected] (J. Danckert), [email protected] (J. Danckert), [email protected] placed in their blind fields (Po¨ppel et al., 1973; Weiskrantz (Y. Rossetti). et al., 1974; Perenin and Jeannerod, 1975). That is, although patients with primary occipital (area V1) lesions are 0149-7634/$ - see front matter q 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.neubiorev.2005.02.001 essentially blind in one visual hemifield, they can 1036 J. Danckert, Y. Rossetti / Neuroscience and Biobehavioral Reviews 29 (2005) 1035–1046 nevertheless demonstrate above chance performance when In this selective review we will suggest a new taxonomy responding to stimuli placed in their blind field. For example, for describing the various residual capacities demonstrated when asked to guess, under the appropriate conditions, the by blindsight patients. It is important to note that this location of a target that was briefly illuminated in the blind taxonomy is intended to describe distinct types of residual hemifield, some patients guess the location accurately on behaviours demonstrated by blindsight patients. While greater than 50% of trials (Weiskrantz et al., 1974; Zihl and some discussion of the neural networks underlying these Werth, 1984a,b). Initially, the most common residual ability distinct behaviours is obviously warranted, at this stage such demonstrated by blindsight patients was the ability to a discussion is necessarily speculative. We will then explore localize, either by pointing or eye movements, targets in more detail one of the proposed definitions of a blindsight presented to the blind field. This ability to localize blind capability—namely ‘action-blindsight’ in which patients field targets has also been demonstrated in hemidecorticated with V1 lesions are able to localize blind field targets by patients (Perenin and Jeannerod, 1978; Ptito et al., 1991). virtue of motor actions (e.g. pointing, grasping or saccades). Taken together, these results suggest subcortical involve- Finally, we will examine how action-blindsight can inform ment in the residual functions of these patients (see models of visually guided action. Jeannerod and Rossetti (1993) and Rossetti and Pisella (2002) for review). However, since the earliest work on 2. A new taxonomy for residual behaviours in blindsight blindsight, a wide range of residual functions have been described, ranging from motion, form and wavelength The earliest demonstrations of blindsight involved asking discrimination, to remarkable demonstrations of semantic the patient to motorically guess the location of a target that priming from words presented to the blind field (Danckert had been briefly flashed in the blind field (Po¨ppel et al., 1973; et al., 1998; Magnussen and Mathiesen, 1989; Marcel, 1998; Weiskrantz et al., 1974; Perenin and Jeannerod, 1975). Morland et al., 1999; Stoerig and Cowey, 1989). Although Weiskrantz first coined the term ‘blindsight’ to account for still somewhat controversial, the performance of blindsight the paradoxical observation of accurate eye and arm patients suggests that visual information is able to reach movements directed toward a visual target that was not extrastriate visual cortex via pathways that do not depend on consciously perceived. Since these early demonstrations, processing in area V1 (see Stoerig and Cowey (1997) for localization of targets presented to the blind field by various review). That is, it has been suggested that the residual means has been by far the most common residual ability pathway which runs from the eye directly to the superior demonstrated (e.g. Weiskrantz et al., 1974; Perenin and colliculus and from there to the pulvinar nucleus of the Jeannerod, 1975; Zihl and Werth, 1984a,b; Danckert et al., thalamus is responsible for the ability to localize blind field 2003; Kentridge et al., 1999a,b). The ability to point or targets (Weiskrantz et al., 1974; Zihl and Werth, 1984a,b). saccade towards a blind field target strongly supported the The many and varied residual abilities demonstrated by some notion that the extrageniculate pathway directly from the eye blindsight patients may suggest, however, that blindsight to the superior colliculus was responsible for this residual relies on not one, but many residual pathways (Danckert and ability (sometimes referred to as the retino-tectal pathway; Goodale, 2000).1 Accordingly, visual projections from Fig. 1). This was especially true for saccades made to blind subcortical structures, and in particular from the pulvinar, field targets given the wealth of literature demonstrating may project not only onto parietal but also onto temporal collicular involvement in the control of eye movements (see cortex. In addition, there is some recent anatomical evidence Gaymard and Pierrot-Deseillingy (1999) for review). This from the macaque monkey that demonstrated direct konio- hypothesis gained even further support from findings in cellular inputs from the interlaminar layers of the LGN to the hemidecorticated patients (Perenin and Jeannerod, 1978; middle temporal (MT) motion-sensitive region of visual Ptito et al., 1991). That is, despite having little or no cortex (Sincich et al., 2004). This finding provides evidence remaining cortex in the damaged hemisphere, these patients for an alternate residual pathway that may subserve the were nevertheless able to show above chance localization of Riddoch phenomenon (see below for a more detailed blind field targets, heavily implicating the retinofugal description of Riddoch phenomenon; Zeki and Ffytche pathway from the eye to the superior colliculus (Perenin (1998); see also Benevento and Yoshida (1981) for and Jeannerod, 1978; Ptito et al., 1991). The requirement that discussion of other LGN inputs to prestriate cortex). an action—pointing or saccading—be used to demonstrate above chance localization of blind field targets leads us to call this kind of residual function ‘action-blindsight’. 1 There has been substantial debate in the literature concerning the As distinct from action-blindsight, some patients demon- possibility that the residual abilities observed in blindsight patients are in strate residual abilities that do not completely lack
Recommended publications
  • Consciousness:** Here,*There*But*Not*Everywhere*
    Tononi%&%Koch%*%Consciousness% % % % Consciousness:** Here,*There*but*Not*Everywhere* by* Giulio*Tononi1*and*Christof*Koch2* % 1Department%of%Psychiatry,%University%of%Wisconsin,%Madison%WI%USA% 2Allen%Institute%for%Brain%Science,%Seattle,%WA%USA% % May%26,%2014% Tononi%&%Koch%–%Consciousness%*%2% Abstract% The%science%of%consciousness%has%made%great%strides%by%focusing%on% the% behavioral% and% neuronal% correlates% of% experience.% However,% correlates%are%not%enough%if%we%are%to%understand%even%basic%facts,%for% example,%why%the%cerebral%cortex%gives%rise%to%consciousness%but%the% cerebellum%does%not,%though%it%has%even%more%neurons%and%appears%to% be%just%as%complicated.%Moreover,%correlates%are%of%little%help%in%many% instances% where% we% would% like% to% know% if% consciousness% is% present:% patients% with% a% few%remaining%islands%of%functioning%cortex,%pre*term% infants,% non*mammalian% species,% and% machines% that% are% rapidly% outperforming% people% at% driving,% recognizing% faces% and% objects,% and% answering% difficult% questions.% To% address% these% issues,% we% need% not% only%more%data,%but%also%a%theory%of%consciousness%–%one%that%says%what% experience%is%and%what%type%of%physical%systems%can%have%it.%Integrated% Information%Theory%(IIT)%does%so%by%starting%from%conscious%experience% itself% via% five% phenomenological% axioms% of% existence,% composition,% information,% integration,%and%exclusion.%From%these%it%derives%five% postulates% about% the%properties%required%of%physical%mechanisms%to% support% consciousness.%
    [Show full text]
  • (Homonymous Hemianopsia): Tapping Into Blindsight
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Medical Hypotheses and Ideas (2015) 9,S8–S13 Available online at www.sciencedirect.com Journal of Medical Hypotheses and Ideas journal homepage: www.elsevier.com/locate/jmhi REGULAR ARTICLE Enhancing visual performance in individuals with cortical visual impairment (homonymous hemianopsia): Tapping into blindsight Faith A. Birnbaum a, Steven A. Hackley b, Lenworth N. Johnson a,* a Neuro-Ophthalmology Unit, Department of Ophthalmology, The Warren Alpert Medical School of Brown University/Lifespan/Rhode Island Hospital, Providence, RI, United States b Department of Psychological Sciences of the University of Missouri Columbia, Columbia, MO, United States Received 2 October 2015; revised 29 November 2015; accepted 15 December 2015 Available online 22 January 2016 KEYWORDS Abstract Homonymous hemianopsia is a type of cortical blindness in which vision is lost Blindsight; completely or partially in the left half or the right half of the field of vision. It is prevalent in Cortical blindness; approximately 12% of traumatic brain injury and 35% of strokes. Patients often experience Homonymous hemianopsia; difficulty with activities such as ambulating, eating, reading, and driving. Due to the high prevalence Augmented virtual reality; of homonymous hemianopsia and its associated difficulties, it is imperative to find methods for Vision restoration therapy visual rehabilitation in this condition. Traditional methods such as prism glasses can cause visual confusion and result in patient noncompliance. There is a large unmet medical need for improving this condition. In this article, we propose that modifying visual stimuli to activate non-cortical areas of visual processing, such as lateral geniculate nucleus and superior colliculus, may result in increased visual awareness.
    [Show full text]
  • Making Sense of Blindsense-Author's Response To: Commentary by Ian
    Making sense of blindsense-Author’s response to: Commentary by Ian Phillips, Clémentine Garric, Florent Caetta, Claire Sergent, Sylvie Chokron To cite this version: Clémentine Garric, Florent Caetta, Claire Sergent, Sylvie Chokron. Making sense of blindsense- Author’s response to: Commentary by Ian Phillips,. Cortex, Elsevier, 2020, 127, pp.393-395. 10.1016/j.cortex.2020.03.004. hal-03031396 HAL Id: hal-03031396 https://hal.archives-ouvertes.fr/hal-03031396 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Authors’ Response to: Commentary by Ian Phillips, Making sense of blindsense Clémentine Garrica,, Florent Caettab,c, Claire Sergentc & Sylvie Chokronb,c a Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F- 59000 Lille, France b Institut de Neuropsychologie, Neurovision et Neurocognition, Fondation Ophtalmologique Rothschild, Paris 75019, France c Integrative Neuroscience and Cognition Center - UMR 8002 CNRS/Université Paris Descartes, Paris 75006, France. Abstract We recently published the results of a study on the occurrence of blindsight among eight, post-stroke homonymous hemianopic (HH) patients (Garric et al., 2019), in whom we measured blindsight through forced-choice tasks and assessed perceptual experiences by a new awareness scale, the Sensation Awareness Scale (SAS).
    [Show full text]
  • Disentangling Mechanisms, Brain Systems, and Behavioral Responses
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositório Institucional UNIFESP 10882 • The Journal of Neuroscience, November 8, 2017 • 37(45):10882–10893 Symposium Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses X Johan F. Storm,1 XMe´lanie Boly,2,3 X Adenauer G. Casali,4 XMarcello Massimini,5,6 XUmberto Olcese,7,8 X Cyriel M.A. Pennartz,7,8 and XMelanie Wilke9,10,11 1Division of Physiology, Department of Molecular Medicine, Institute of Basal Medical Sciences, University of Oslo, Oslo, 0317, Norway, 2Department of Neurology, University of Wisconsin, Madison, Wisconsin, 53705, 3Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, 53719, 4Institute of Science and Technology, Federal University of Sa˜o Paulo, Sa˜o Jose´ dos Campos, SP, 12231-280, Brazil, 5Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, 20157, Italy, 6Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi ONLUS, 20162 Milano, Italy, 7Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences and 8Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, 1098XH, The Netherlands, 9Department of Cognitive Neurology, University Medicine Goettingen, Goettingen, 37075, Germany, 10German Primate Center, Leibniz Institute for Primate Research, Goettingen, 37077, Germany, and 11Leibniz Science Campus Primate Cognition, Goettingen, 37077, Germany How consciousness (experience) arises from and relates to material brain processes (the “mind-body problem”) has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience.
    [Show full text]
  • A Traditional Scientific Perspective on the Integrated Information Theory Of
    entropy Article A Traditional Scientific Perspective on the Integrated Information Theory of Consciousness Jon Mallatt The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844, USA; [email protected] Abstract: This paper assesses two different theories for explaining consciousness, a phenomenon that is widely considered amenable to scientific investigation despite its puzzling subjective aspects. I focus on Integrated Information Theory (IIT), which says that consciousness is integrated information (as φMax) and says even simple systems with interacting parts possess some consciousness. First, I evaluate IIT on its own merits. Second, I compare it to a more traditionally derived theory called Neurobiological Naturalism (NN), which says consciousness is an evolved, emergent feature of complex brains. Comparing these theories is informative because it reveals strengths and weaknesses of each, thereby suggesting better ways to study consciousness in the future. IIT’s strengths are the reasonable axioms at its core; its strong logic and mathematical formalism; its creative “experience- first” approach to studying consciousness; the way it avoids the mind-body (“hard”) problem; its consistency with evolutionary theory; and its many scientifically testable predictions. The potential weakness of IIT is that it contains stretches of logic-based reasoning that were not checked against hard evidence when the theory was being constructed, whereas scientific arguments require such supporting evidence to keep the reasoning on course. This is less of a concern for the other theory, NN, because it incorporated evidence much earlier in its construction process. NN is a less mature theory than IIT, less formalized and quantitative, and less well tested.
    [Show full text]
  • Blindsight: What Happens When V1 Is Damaged?
    Blindsight: What happens when V1 is damaged? • Individuals who have experienced a stroke that has selectively damaged area V1, or who have had V1 removed surgically, report being blind in the affected part of visual space (e.g., damage to left V1 affects the right visual field). • However, if these individuals are asked to point to an object to reach out and grasp an object in the “blind” field, they can do so accurately, even though they claim they are just guessing. Blindsight: What happens when V1 is damaged? • Similarly if they are asked to report on an object in the good visual field, the presentation of objects in the impaired field can influence those reports (e.g., responses to objects in the good field are slowed down when another object is presented at the same in the bad field compared to when it is shown alone). • Some visual information is getting through to the parts of the brain that control action, but not entering awareness. • Does this mean that V1 is necessary for visual awareness? Blindsight patient GY has a lesion in left V1. He reports being blind to objects in the right visual field, yet he can correctly point to and grasp them. These fMRI scans show robust activity in extrastriate visual areas when stimuli were presented in the ‘blind’ region. Without V1, how did these signals get to the dorsal pathway? There’s a second pathway to the dorsal stream that bypasses V1! Retina – Superior Colliculus - Pulvinar So damage to V1 can lead to sight without awareness (blindsight).
    [Show full text]
  • Visual System: How Does Blindsight Arise?
    Current Biology Vol 20 No 17 R702 6. Revenkova, E., Herrmann, K., Adelfalk, C., and 12. Revenkova, E., Eijpe, M., Heyting, C., 18. Perez, G.I., Jurisicova, A., Wise, L., Lipina, T., Jessberger, R. (2010). Oocyte cohesin Hodges, C.A., Hunt, P.A., Liebe, B., Kanisek, M., Bechard, A., Takai, Y., Hunt, P., expression restricted to pre-dictyate stages Scherthan, H., and Jessberger, R. (2004). Roder, J., Grynpas, M., et al. (2007). Absence provides full fertility and prevents aneuploidy. Cohesin SMC1 beta is required for meiotic of the proapoptotic Bax protein extends Curr. Biol. 20, 1529–1533. chromosome dynamics, sister chromatid fertility and alleviates age-related health 7. Chiang, T., Duncan, F.E., Schindler, K., cohesion and DNA recombination. Nat. Cell complications in female mice. Proc. Natl. Schultz, R.M., and Lampson, M.A. (2010). Biol. 6, 555–562. Acad. Sci. USA 104, 5229–5234. Evidence that weakened centromere 13. Hodges, C.A., Revenkova, E., Jessberger, R., 19. Garcia-Cruz, R., Brieno, M.A., Roig, I., cohesin is a leading cause of age-related Hassold, T.J., and Hunt, P.A. (2005). Grossmann, M., Velilla, E., Pujol, A., Cabero, L., aneuploidy in oocytes. Curr. Biol. 20, SMC1beta-deficient female mice provide Pessarrodona, A., Barbero, J.L., and Garcia 1522–1528. evidence that cohesins are a missing link in Caldes, M. (2010). Dynamics of cohesin 8. Lister, L., Kouznetsova, A., Hyslop, L., age-related nondisjunction. Nat. Genet. 37, proteins REC8, STAG3, SMC1{beta} and Kalleas, D., Pace, S., Barel, J., Nathan, A., 1351–1355. SMC3 are consistent with a role in sister Floros, V., Adelfalk, C., Watanabe, Y., et al.
    [Show full text]
  • A Higher-Order Theory of Emotional Consciousness. Joseph Ledoux and Richard Brown
    1 SUPPORTING INFORMATION Feeling It: A Higher-Order Theory of Emotional Consciousness. Joseph LeDoux and Richard Brown Table of Contents Page Number Box 1: Defining Cortical vs. Subcortical Circuits 2 Box 2: The Consciousness Patients: How Neurological 2 Cases Helped Revive Interest in Consciousness as a Scientific Topic Box 3: Measuring Introspective Consciousness Using 3 Verbal and other Reporting Methods in Humans and Other Animals Box 4: Nonconscious Cognition (Especially Nonconscious 7 Working Memory) Box 5: Rich versus Sparse views on Phenomenology of 10 Perception Box 6: Role of Awareness in First-Order Phenomenal 12 Consciousness Box 7: Higher-Order Theories and their Relation to Other 15 Cognitive Theories of Consciousness Box 8: Phenomenal Consciousness in Higher-order 19 Thought Theories of Consciousness Box 9: Relational versus Non-Relational Higher-Order 19 Theories Box 10: Research Questions 21 2 BOX 1: DEFINING CORTICAL VS. SUBCORTICAL CIRCUITS. For the purposes of this article we distinguish “cortical” and “subcortical” circuits of the cerebral hemispheres in the following way. “Cortical” is used in reference to laminated structures in the outer shell (i.e. the cortex) of cerebral hemispheres. Particular emphasis is placed on cortical regions that contribute to sensory processing (areas of visual cortex) and higher cognitive processing (especially lateral and medial prefrontal cortex, but also parietal and insular cortex). “Subcortical” is used to refer to structures that lie within, but underneath the cortical mantle, of the cerebral hemispheres, and that lack prominent or consistent lamination. Circuits centered on the amygdala that detect innate and learned threats and control the expression of defensive behaviors and supporting physiological responses in response to theses stimuli are emphasized.
    [Show full text]
  • The Timing and Neuroanatomy of Conscious Vision As Revealed by TMS-Induced Blindsight
    The Timing and Neuroanatomy of Conscious Vision as Revealed by TMS-induced Blindsight Christopher P. G. Allen, Petroc Sumner, and Christopher D. Chambers Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/26/7/1507/1781339/jocn_a_00557.pdf by MIT Libraries user on 17 May 2021 Abstract ■ Following damage to the primary visual cortex, some patients dicating that such pathways, which include those to the superior exhibit “blindsight,” where they report a loss of awareness while colliculus, are not critical. We also found that the modulation of retaining the ability to discriminate visual stimuli above chance. conscious vision was time and pathway dependent. TMS applied Transient disruption of occipital regions with TMS can produce either early (0–40 msec) or late (280–320 msec) after stimulus a similar dissociation, known as TMS-induced blindsight. The onset modulated detection of stimuli that did not bypass R/M neural basis of this residual vision is controversial, with some pathways, whereas during an intermediate period (90–130 msec) studies attributing it to the retinotectal pathway via the superior the effect was pathway independent. Our findings thus suggest colliculus whereas others implicate spared projections that origi- a prominent role for the R/M pathways in supporting both the nate predominantly from the LGN. Here we contrasted these preparatory and later stages of conscious vision. This may help accounts by combining TMS with visual stimuli that either acti- resolve apparent conflict in previous literature by demonstrating vate or bypass the retinotectal and magnocellular (R/M) path- that the roles of the retinotectal and geniculate pathways are ways.
    [Show full text]
  • From Affective Blindsight to Emotional Consciousness
    Consciousness and Cognition 36 (2015) 414–425 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog From affective blindsight to emotional consciousness ⇑ Alessia Celeghin a,b,c, Beatrice de Gelder d, Marco Tamietto a,b,e, a Department of Psychology, University of Torino, Italy b Department of Medical and Clinical Psychology, CoRPS – Center of Research on Psychology in Somatic Diseases, Tilburg University, The Netherlands c GCS fMRI, Koelliker Hospital, Torino, Italy d Department of Cognitive Neuroscience, Maastricht University, The Netherlands e Department of Experimental Psychology, University of Oxford, UK article info abstract Article history: Following destruction or denervation of the primary visual cortex (V1) cortical blindness Received 18 January 2015 ensues. Affective blindsight refers to the uncanny ability of such patients to respond cor- Revised 12 May 2015 rectly, or above chance level, to visual emotional expressions presented to their blind Accepted 13 May 2015 fields. Fifteen years after its original discovery, affective blindsight still fascinates neurosci- Available online 6 June 2015 entists and philosophers alike, as it offers a unique window on the vestigial properties of our visual system that, though present in the intact brain, tend to be unnoticed or even Keywords: actively inhibited by conscious processes. Here we review available studies on affective Cortical blindness blindsight with the intent to clarify its functional properties, neural bases and theoretical V1 Emotion implications. Evidence converges on the role of subcortical structures of old evolutionary Awareness origin such as the superior colliculus, the pulvinar and the amygdala in mediating affective Amygdala blindsight and nonconscious perception of emotions.
    [Show full text]
  • Qt5495t34x Nosplash 48C6640
    Neuroscience of Consciousness, 2016, 1–8 doi: 10.1093/nc/niw001 Opinion Paper Who’s afraid of response bias? Megan A. K. Peters1,*, Tony Ro2 and Hakwan Lau1,3 1Department of Psychology, University of California Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563 USA; 2Programs in Psychology and Biology, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, NY 10016 USA; 3Brain Research Institute, University of California Los Angeles, 695 Charles E. Young Dr. South, Los Angeles, CA 90095 USA *Correspondence address. Department of Psychology, University of California Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563 USA, Tel: þ1 323-596-1093, E-mail: [email protected] Abstract Response bias (or criterion) contamination is insidious in studies of consciousness: that observers report they do not see a stimulus may not mean they have absolutely no subjective experience; they may be giving such reports in relative terms in the context of other stimuli. Bias-free signal detection theoretic measures provide an excellent method for avoiding response bias confounds, and many researchers correctly adopt this approach. However, here we discuss how a fixation on avoiding criterion effects can also be misleading and detrimental to fruitful inquiry. In a recent paper, Balsdon and Azzopardi (Absolute and relative blindsight. Consciousness and Cognition 2015; 32:79–91.) claimed that contamination by response bias led to flawed findings in a previous report of “relative blindsight”. We argue that their criticisms are unfounded. They mistakenly assumed that others were trying (and failing) to apply their preferred methods to remove bias, when there was no such intention.
    [Show full text]
  • Dennett on the Blind Spot, Blindsight, and Sensory Qualia
    CONSCIOUSNESS AND COGNITION 2, 155-164 (1993) Why the Blind Can't Lead the Blind: Dennett on the Blind Spot, Blindsight, and Sensory Qualia RoBERT N. McCAULEY Department of Philosophy, Emory University, Atlanta, Georgia 30322 In Consciousness Explained Dan Dennett proposes a deflationary treatment of sensory qualia. He seeks to establish a continuity among both the neural and the conscious phenomena connected with the blind spot and with the perception of repetitive patterns on the one hand and the neutral and conscious phenomena connected with blindsight on the other. He aims to analyze the conscious phenomena associated with each in terms of what the brain ignores. Dennett offers a thought experiment about a blindsight patient who has the sensory information that normals do , but who seems not to have their sensory qualia. What is it that normals know that this blindsight patient does not? Dennett' s answer is "nothing." Dennett's denial of " filling-in " accounts of repetitive patterns and the blind spot constitute a Rylean intuition pump for this thought experi­ ment. Research by Ramachandran raises important problems for Dennett's account. Moreover, Dennett's attempt to discount the significance of "artificial scotomas" inad­ vertently employs a principle that undermines his case for establishing the continuity between the phenomen.a in question. © 1993 Academic Press, Inc. I. INTRODUCTION In Consciousness Explained Dan Dennett offers a welcome corrective to much loose talk about consciousness by dualists and materialists alike. He maintains that our conscious mental life is neither a report on a single stream of representa­ tions from a homunculus in the mind's central clearinghouse nor the registration of such representations at a comparable clearinghouse somewhere in the brain.
    [Show full text]