Exceptionally Well-Preserved Fossils in a Middle Ordovician Impact Crater

Total Page:16

File Type:pdf, Size:1020Kb

Exceptionally Well-Preserved Fossils in a Middle Ordovician Impact Crater Review focus Journal of the Geological Society Published online September 24, 2018 https://doi.org/10.1144/jgs2018-101 | Vol. 175 | 2018 | pp. 865–874 The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater Derek E.G. Briggs1,2*, Huaibao P. Liu3, Robert M. McKay3 & Brian J. Witzke4 1 Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 2 Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA 3 Iowa Geological Survey, IIHR – Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA 52242, USA 4 Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA D.E.G.B., 0000-0003-0649-6417 * Correspondence: [email protected] Abstract: The Winneshiek Shale (Middle Ordovician, Darriwilian) was deposited in a meteorite crater, the Decorah impact structure, in NE Iowa. This crater is 5.6 km in diameter and penetrates Cambrian and Ordovician cratonic strata. It was probably situated close to land in an embayment connected to the epicontinental sea; typical shelly marine taxa are absent. The Konservat-Lagerstätte within the Winneshiek Shale is important because it represents an interval when exceptional preservation is rare. The biota includes the earliest eurypterid, a giant form, as well as a new basal chelicerate and the earliest ceratiocarid phyllocarid. Conodonts, some of giant size, occur as bedding plane assemblages. Bromalites and rarer elements, including a linguloid brachiopod and a probable jawless fish, are also present. Similar fossils occur in the coeval Ames impact structure in Oklahoma, demonstrating that meteorite craters represent a novel and under-recognized setting for Konservat- Lagerstätten. Received 18 May 2018; revised 7 August 2018; accepted 7 August 2018 The Winneshiek Konservat-Lagerstätte was discovered in 2005 in fossils, including arthropod appendages (Fig. 3h, i)(Nowak et al. the Winneshiek Shale, which directly underlies the Ordovician St 2018) and filamentous algae (Nowak et al. 2017). Peter Sandstone, during mapping by the Iowa Geological Survey (Liu et al. 2005)(Fig. 1). The only exposure, which represents the The meteorite crater and the age of the Winneshiek Shale top of the Winneshiek Shale, is in the valley of the Upper Iowa River near Decorah in Iowa. Collections from this locality yielded The Winneshiek Shale, an unusual greenish brown to dark grey conodonts, linguloid brachiopods, large fragments of eurypterid organic-rich shale up to 26 m thick, was noted in cores and well cuticles and phyllocarid crustaceans (Liu et al. 2005). A coal-like cuttings some years prior to the discovery of the exposure near layer had been reported in local newspapers in the 1920s, which Decorah (Young et al. 2005). It overlies an unnamed unit dominated could only have been a concentration of eurypterid cuticles, perhaps by breccia (Fig. 1c), the two reaching a combined thickness of to encourage speculators. H. Paul Liu recognized the exceptional c. 200 m. Occurrences of the shale in drill core and in outcrop nature of these fossils and he and colleagues published a preliminary delimit a circle with a diameter of c. 5.6 km (Liu et al. 2009) account of the discovery in 2006 (Liu et al. 2006). A collaborative (Fig. 1b). This outline was also detected in electromagnetic and grant to the authors funded the construction of a temporary dam in gravity data from airborne geophysical surveys. The circular 2010, which isolated the exposure of the Winneshiek Shale on the structure and its sedimentary fill are concealed by the overlying St north bank of the Upper Iowa River near Decorah (Fig. 2a–c). This Peter Sandstone and Quaternary alluvium, except at one small allowed access to the shale and a sequence of large samples, locality in the Upper Iowa River Valley near Decorah, where the top representing c. 4 m of the section, was extracted by hand with the of the shale is at the land surface. The circular depositional basin is aid of earth-moving equipment (Fig. 2b, c). The shale was split at characterized by evidence of local deformation near the perimeter the Iowa Geological Survey sample repository over the next three (Fig. 2e) and its unusual stratigraphy. The Winneshiek Shale and years and yielded >5000 macrofossil specimens. underlying breccia are found only within the circular structure, The biota of the Winneshiek Shale is characterized by exceptional where the units are completely different from the regional preservation combined with a restricted diversity, both of which stratigraphic sequence (Liu et al. 2009; French et al. 2018). All reflect the unusual depositional setting. The dominant macro- these attributes are consistent with deposition within a meteorite fossils are arthropods: the giant Pentecopterus decorahensis crater. This inference was elegantly confirmed by the demonstration (Fig. 3) is the earliest described eurypterid (Lamsdell et al. 2015b) that quartz grains observed in drill samples from the breccia show and a diversity of bivalved arthropods includes a phyllocarid, shock-induced phenomena (Liu et al. 2009; McKay et al. 2011), Ceratiocaris winneshiekensis, and ostracods (Fig. 4). Conodont particularly the fractures and deformation features characteristic of elements are the most abundant fossils, many occurring as bedding an impact (French et al. 2018). plane assemblages (Fig. 5), and extrapolation indicates that some are The stratigraphic context and fossils indicate that the Winneshiek from individual animals of very large size (Liu et al. 2017). Rare Shale is Darriwilian (Middle Ordovician) in age, i.e. from 458.4 to specimens interpreted as the head shield of an early armoured 467.3 Ma (Gradstein et al. 2012; Cohen et al. 2013). None of the vertebrate (Liu et al. 2006) are also present (Fig. 5d). Dissolution of the conodonts associated with the exceptionally preserved fossils are organic-rich shale has yielded a variety of microscopic carbonaceous zonal index fossils, but they include Multioistodus subdentatus, © 2018 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/3.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/175/6/865/4549063/jgs2018-101.pdf by guest on 30 September 2021 866 D.E.G. Briggs et al. Fig. 1. (a) Location of Decorah in the NE of the State of Iowa, USA. (b) Geological map of Winneshiek and Allamakee counties in the northeastern corner of Iowa State, bounded to the east by the Mississippi River and the State of Wisconsin. From the map Bedrock Geology of Northeast Iowa; Witzke et al. (1998).(c) Geological cross-section through the western part of the Decorah impact structure. The gently dipping Cambrian and Ordovician formations are disrupted by the impact basin, which is filled with breccia, conglomerate and sandstone (unnamed), overlain by the Winneshiek Shale. Much of the impact basin is overlain by the St Peter Sandstone, which varies in thickness due to the erosional contact at its base. Based on Wolter et al. (2011) and French et al. (2018). which is known from Darriwilian strata around Laurentia from Shakopee Formation, the youngest unit penetrated by the crater, Alberta to New York State (Witzke et al. 2011; Liu et al. 2017). The which is separated from the overlying St Peter Sandstone by a major presence of the unusual conodont Archeognathus primus (Fig. 5a, b) unconformity (Fig. 1c). The Shakopee Formation yields conodonts is consistent with this age. The St Peter Sandstone overlies the of Middle Tremadocian age, indicating that the impact occurred no Winneshiek Shale (Fig. 1c) and drill cores through this formation earlier than c. 482 Ma. The impact penetrated a marine embayment in Iowa, Minnesota and Indiana have yielded a diversity of conodonts or estuary in the southern part of the palaeocontinent Laurentia indicating a late Darriwilian age. Characteristic early Darriwilian (Witzke 1990; Liu et al. 2009, 2017; Witzke et al. 2011). The conodonts (the Histiodella–Paraprioniodus–Pteracontiodus– complexity of the crater-fill and the lithological variability of the Fahraeusodus fauna) are absent in the Winneshiek Shale. Thus the breccia suggest that the meteorite entered a significant depth of conodont data constrain the age of the exceptionally preserved fossils, water (French et al. 2018). Cratering models indicate that a which were collected near the top of the Winneshiek Shale, to substantial thickness of younger sediments was present at the time middle–late Darriwilian (Liu et al.2017). Chemostratigraphic data, of the impact, possibly 300–500 m, which was subsequently 13 based on δ Corg data from 36 drill core samples, narrow the age of removed by erosion. This period of erosion may have lasted for the Winneshiek Shale to c.464–467 Ma (Bergström et al. 2018), i.e. 10–20 myr, after which the St Peters Sandstone was deposited, early–middle Darriwilian. Thus the exceptionally preserved fossils burying the crater and the surrounding area (French et al. 2018). are likely to be middle Darriwilian. The age of the Decorah impact structure is not well constrained, The meteorite impact clearly predates deposition of the but it coincides with the break-up of an L-chondrite meteorite parent Winneshiek Shale and the underlying breccia. The Winneshiek body, which resulted in a series of Middle Ordovician impacts Shale provides a minimum age for the impact of c. 464–467 Ma (Bergström et al. 2018)atc. 470 Ma (Korochantseva et al. 2007)or (Bergström et al. 2018). A maximum age is provided by the 468 Ma (Lindskog et al. 2017). A possible link between the asteroid Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/175/6/865/4549063/jgs2018-101.pdf by guest on 30 September 2021 Middle Ordovician Winneshiek biota 867 Fig.
Recommended publications
  • Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan
    Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan By D.B. WESTJOHN and T.L. WEAVER U.S. Geological Survey Water-Resources Investigations Report 94-4246 Lansing, Michigan 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Earth Science Information Center 6520 Mercantile Way, Suite 5 Open-File Reports Section Lansing, Ml 48911 Box 25286, MS 517 Denver Federal Center Denver, CO 80225 CONTENTS Abstract .......................................................... 1 Introduction ....................................................... 1 Geology .......................................................... 3 Coldwater Shale ................................................ 3 Marshall Sandstone .............................................. 6 Michigan Formation .............................................. 7 Hydrogeologic framework of Mississippian rocks ................................ 8 Relations of stratigraphic units to aquifer and confining units .................... 8 Delineation of aquifer- and confining-unit boundaries ......................... 9 Description of confining units and the Marshall aquifer ........................ 9 Michigan confining
    [Show full text]
  • Church 18.Pdf (1.785Mb)
    Paleontological Contributions Number 18 Efficient Ornamentation in Ordovician Anthaspidellid Sponges Stephen B. Church August 9, 2017 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Ridge-and-trough ornamented outer-wall fragment of the Ordovician anthaspidellid sponge Rugocoelia eganensis Johns, 1994. Paleontological Contributions August 9, 2017 Number 18 EFFICIENT ORNAMENTATION IN ORDOVICIAN ANTHASPIDELLID SPONGES Stephen B. Church Department of Geological Sciences, Brigham Young University, Provo, Utah 84602-3300, [email protected] ABSTRACT Lithistid orchoclad sponges within the family Anthaspidellidae Ulrich in Miller, 1889 include several genera that added ornate features to their outer-wall surfaces during Early Ordovician sponge radiation. Ornamented anthaspidellid sponges commonly constructed annulated or irregularly to regularly spaced transverse ridge-and-trough features on their outer-wall surfaces without proportionately increasing the size of their internal wall or gastral surfaces. This efficient technique of modi- fying only the sponge’s outer surface without enlarging its entire skeletal frame conserved the sponge’s constructional energy while increasing outer-wall surface-to-fluid exposure for greater intake of nutrient bearing currents. Sponges with widely spaced ridge-and-trough ornament dimensions predominated in high-energy settings. Widely spaced ridges and troughs may have given the sponge hydrodynamic benefits in high wave force settings. Ornamented sponges with narrowly spaced ridge-and- trough dimensions are found in high energy paleoenvironments but also occupied moderate to low-energy settings, where their surface-to-fluid exposure per unit area exceeded that of sponges with widely spaced surface ornamentations. Keywords: lithistid sponges, Ordovician radiation, morphological variation, theoretical morphology INTRODUCTION assumed by most anthaspidellids.
    [Show full text]
  • PROFESSIONAL PAPER 1418 USGS Cience for a Changing World AVAILABILITY of BOOKS and MAPS of the U.S
    PROFESSIONAL PAPER 1418 USGS cience for a changing world AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth of general interest (such as leaflets, pamphlets, booklets), single Science Information Centers (ESIC's), all of which are authorized copies of Preliminary Determination of Epicenters, and some mis­ agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are ANCHORAGE, Alaska Rm. 101,4230 University Dr. obtainable by mail from LAKEWOOD, Colorado Federal Center, Bldg. 810 U.S. Geological Survey, Information Services MENLO PARK, California Bldg. 3, Rm.
    [Show full text]
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • Exceptionally Well-Preserved Fossils in a Middle Ordovician Impact Crater
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-101 The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater Derek E.G. Briggs1,2*, Huaibao P. Liu3, Robert M. McKay3 & Brian J. Witzke4 1 Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 2 Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA 3 Iowa Geological Survey, IIHR – Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA 52242, USA 4 Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA D.E.G.B., 0000-0003-0649-6417 * Correspondence: [email protected] Abstract: The Winneshiek Shale (Middle Ordovician, Darriwilian) was deposited in a meteorite crater, the Decorah impact structure, in NE Iowa. This crater is 5.6 km in diameter and penetrates Cambrian and Ordovician cratonic strata. It was probably situated close to land in an embayment connected to the epicontinental sea; typical shelly marine taxa are absent. The Konservat-Lagerstätte within the Winneshiek Shale is important because it represents an interval when exceptional preservation is rare. The biota includes the earliest eurypterid, a giant form, as well as a new basal chelicerate and the earliest ceratiocarid phyllocarid. Conodonts, some of giant size, occur as bedding plane assemblages. Bromalites and rarer elements, including a linguloid brachiopod and a probable jawless fish, are also present. Similar fossils occur in the coeval Ames impact structure in Oklahoma, demonstrating that meteorite craters represent a novel and under-recognized setting for Konservat- Lagerstätten.
    [Show full text]
  • Conodonts in Ordovician Biostratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia 1 Conodonts in Ordovician biostratigraphy STIG M. BERGSTRÖM AND ANNALISA FERRETTI Conodonts in Ordovician biostratigraphy The long time interval after Pander’s (1856) original conodont study can in terms of Ordovician conodont biostratigraphic research be subdivided into three periods, namely the Pioneer Period (1856-1955), the Transition Period (1955-1971), and the Modern Period (1971-Recent). During the pre-1920s, the few published conodont investigations were restricted to Europe and North America and were not concerned about the potential use of conodonts as guide fossils. Although primarily of taxonomic nature, the pioneer studies by Branson & Mehl, Stauffer, and Furnish during the 1930s represent the beginning of the use of conodonts in Ordovician biostratigraphy. However, no formal zones were introduced until Lindström (1955) proposed four conodont zones in the Lower Ordovician of Sweden, which marks the end of the Pioneer Period. Because Lindström’s zone classification was not followed by similar work outside Baltoscandia, the time interval up to the late 1960s can be regarded as a Transition Period. A milestone symposium volume, entitled ‘Conodont Biostratigraphy’ and published in 1971, 2 summarized much new information on Ordovician conodont biostratigraphy and is taken as the beginning of the Modern Period of Ordovician conodont biostratigraphy. In this volume, the Baltoscandic Ordovician was subdivided into named conodont zones whereas the North American Ordovician succession was classified into a series of lettered or numbered Faunas. Although most of the latter did not receive zone names until 1984, this classification has been used widely in North America.
    [Show full text]
  • Zootaxa,Crustacean Classification
    Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages.
    [Show full text]
  • Gyraulus Laevis in Nederland 87
    Kuijper: Gyraulus laevis in Nederland 87 Gyraulus laevis (Mollusca: Planorbidae) in Nederland door W.J. Kuijper Enkele recente waarnemingen van een van onze zeldzaamste planorbiden waren de aanleiding tot het samenstellen van een over- laevis zicht van alle van Nederland bekende vondsten van Gyraulus (Alder, 1838). Tot voor kort waren slechts enkele vindplaatsen van dit dier bekend (Janssen & De Vogel, 1965: 75). Hierbij komt het betrof feit dat het in een aantal gevallen slechts een enkel exemplaar en de soort niet meer teruggevonden kon worden. Het volgende geeft een chronologisch overzicht van de waarnemingen van Gyraulus laevis in Nederland. Voor zover beschikbaar zijn diverse gegevens van de vindplaatsen vermeld. WAARNEMINGEN 1. Koudekerke (bij Middelburg), buitenplaats Vijvervreugd, ± 1890. Fraai vers materiaal: 69 exemplaren in de collectie Schep- de man (Zoölogisch Museum, Amsterdam). Later niet meer vermeld, buitenplaats bestaat niet meer (Kuiper, 1944: 6). Dit materiaalwerd verzameld door Dr. IJ. Keijzer en is vermeld in: Verslag over 1885-1893 van het Zeeuwsch Genootschap der Wetenschappen, blz. 88 (volgens Mevr. Dr. W.S.S. van der Feen - van Benthem Jut- ting). Verder is materiaal van deze vindplaats in de collecties van het Zeeuwsch Museum te Middelburg (2 ex.) en het Natuurhistorisch Museum te Enschede (6 ex.) aanwezig. 2. Warmond (bij Leiden), in de Leede, januari 1916 (Van Ben- them Jutting, 1933: 179). Dit materiaal werd verzameld door P.P. de Koning; in het Rijksmuseum van Natuurlijke Historie te Leiden bevinden zich vier schelpen van deze vindplaats, waarvan twee een doorsnede van ca. 4 mm bereiken. 3. 't Zand (bij Roodeschool), Oostpolder, 1927 (Van Benthem Jutting, 1947: 66).
    [Show full text]
  • AND GEOLOGY of the SURROUNDING AREA I
    . " ... , - .: ~... GP3/10 ~ " . :6',;, J .~~- -i-~ .. '~ MANITOBA MINES BRANCH DEPARTMENT OF MfNES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO~EXPLOSION CRATER .. AND GEOLOGY OF THE SURROUNDING AREA i . , - by H. R. McCabe and B. B. Bannatyne Geological Paper 3/70 Winnipeg 1970 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. (i) GP3/10 MANITOBA M]NES BRANCH DEPARTMENT OF MINES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO·EXPLOSION CRATER AND GEOLOGY OF THE SURROUNDING AREA by H. R. McCabe and B. B. Bannatync • Geological Paper 3/70 Winnipeg 1970 (ii) TABLE OF CONTENTS Page Introduction' r Previous work I .. Present work 2 Purpose 4 Acknowledgcmcnts 4 Part A - Regional geology and structural setting 4 Post-Silurian paleogeography 10 Post-crater structure 11 Uthology 11 Precambrian rocks 12 Winnipeg Fomlation 13 Red River Fomlation 14 Stony Mountain Formation 15 Gunn Member 15 Gunton Member 16 Stoncwall Formation 16 Interlake Group 16 Summary 17 Part B - Lake St. Martin crypto-explosion crater 33 St. Martin series 33 Shock metamorphism 33 Quartz 33 Feldspar 35 Biotite 35 Amphibole 36 Pseudotachylyte 36 Altered gneiss 37 Carbonate breccias 41 Polymict breccias 43 Aphanitic igneous rocks - trachyandcsitc 47 Post·crater Red Beds and Evaporites (Amaranth Formation?) 50 Red Bed Member 50 Evaporite Member 52 Age of Red Bed·Evaporite sequence 53 Selected References 67 .
    [Show full text]
  • CONODONTS of the MOJCZA LIMESTONE -.: Palaeontologia Polonica
    CONODONTS OF THE MOJCZA LIMESTONE JERZY DZIK Dzik, J. 1994. Conodonts of the M6jcza Limestone. -In: J. Dzik, E. Olemp ska, and A. Pisera 1994. Ordovician carbonate platform ecosystem of the Holy Cross Moun­ tains. Palaeontologia Polonica 53, 43-128. The Ordovician organodetrital limestones and marls studied in outcrops at M6jcza and Miedzygorz, Holy Cross Mts, Poland, contains a record of the evolution of local conodont faunas from the latest Arenig (Early Kundan, Lenodus variabilis Zone) to the Ashgill (Amorphognathus ordovicicus Zone), with a single larger hiatus corre­ sponding to the subzones from Eop/acognathus pseudop/anu s to E. reclinatu s. The conodont fauna is Baltic in general appearance but cold water genera , like Sagitto­ dontina, Scabbardella, and Hamarodus, as well as those of Welsh or Chinese af­ finities, like Comp/exodus, Phragmodus, and Rhodesognathu s are dominant in par­ ticular parts of the section while others common in the Baltic region, like Periodon , Eop/acognathus, and Sca/pellodus are extremely rare. Most of the lineages continue to occur throughout most of the section enabling quantitative studies on their phyletic evolut ion. Apparatuses of sixty seven species of thirty six genera are described and illustrated. Phyletic evolution of Ba/toniodus, Amorphognathu s, Comp/exodus, and Pygodus is biometrically documented. Element s of apparatu ses are homolog ized and the standard notation system is applied to all of them. Acodontidae fam. n., Drepa­ nodus kie/censis sp. n., and D. santacrucensis sp. n. are proposed . Ke y w o r d s: conodonts, Ordovici an, evolut ion, taxonomy. Jerzy Dzik, Instytut Paleobiologii PAN, A/eja Zwirk i i Wigury 93, 02-089 Warszawa , Poland.
    [Show full text]
  • ROOT RIVER ONE WATERSHED, ONE PLAN -I- SWCD Soil and Water Conservation District
    Cold Snap Photography Prepared For: Root River Planning Partnership Prepared By: Houston Engineering, Inc. Photo by Bob Joachim Root River Watershed | ONE WATERSHED, ONE PLAN List of PLan Abbreviations i Plan Definitions iii Executive Summary iv 1. INTRODUCTION 1-1 1.1 Preamble 1-1 1.2 Plan Area 1-1 1.3 Watershed Characteristics 1-4 1.4 Plan Overview 1-4 1.5 Plan Partners and Roles in Plan Development 1-5 1.6 Incorporating Comments into the Plan __________________1-7 2. ANALYSIS AND PRIORITIZATION OF RESOURCES, CONCERNS, AND ISSUES CAUSING CONCERN 2-1 2.1 Definitions 2-1 2.2 Identifying Potential Resource Concerns and Issues 2-2 2.3 Prioritizing Potential Resource Concerns and Issues 2-13 2.4 Priority Resource Concerns and Issues 2-14 2.4.1 "A" Level Priorities 2-14 2.4.1.1 Description and Resource Concern Locations 2-14 2.4.1.2 Issues Affecting "A" Level Priority Resource Concerns 2-18 2.4.2 "B" Level Priorities 2-18 2.4.2.1 Description and Landscape Locations 2-18 2.4.2.2 Issues Affecting “B” Level Priority Resource Concerns 2-26 2.4.3 "C" Level Priorities 2-26 2.4.3.1 Issues Affecting “C” Level Priority Resource Concerns 2-35 2.5 Use of Priority Categories in Plan Implementation 2-35 2.6 Emerging Issues 2-35 2.6.1 "Scientific and Technical Emerging Issues 2-36 2.61.1 Climate Change and Infrastructure Resilience 2-36 2.6.1.2 Endocrine Active Compounds 2-37 2.6.1.3 Water Movement Within a Karst Landscape 2-37 2.6.1.4 Improving Soil Health 2-37 2.6.1.5 Buffers for Public Waters and Drainage Systems 2-38 2.6.1.6 Invasive Species 2-38 2.6.1.7
    [Show full text]
  • Gyraulus) Gilberti (Dunker, 1848
    Gyraulus (Gyraulus) gilberti (Dunker, 1848) Diagnostic features The peripheral keel or angulation is weaker than in G. edgbastonensis, and like that species it is central. This species varies widely in degree of depression and angulation, and Gyraulus (Gyraulus) gilberti (adult size 4.8-5.5 mm) Distribution of Gyraulus (Gyraulus) gilberti. development of spiral sculpture. Classification Gyraulus (Gyraulus) gilberti (Dunker, 1848) Class Gastropoda I nfraclass Heterobranchia Megaorder Hygrophila Order Lymnaeida Superfamily Planorboidea Family Planorbidae Subfamily: Planorbinae Genus Gyraulus Charpentier, 1837 Original name: Planorbis gilberti Dunker, A.G. (1848). Dunker, A.G. (1848). Diagnoses specierum novarum generis Planorbis collection is Cumingianae. Proceedings of the Zoological Society London 1848: 40-43. Type locality: Brisbane district, Queensland. Synonyms: Planorbis macquariensis Smith, 1883; Planorbis fragilis Smith, 1883 (non Dunker, 1850); Planorbis brazieri Clessin, 1885 (replacement name for P. fragilis Smith); Planorbis planissimus Clessin, 1885; Planorbis daemeli Clessin, 1885; Glyptanisus idenusredale, 1943; Glyptanisus stabilis redale, 1943; Glyptanisus speranusredale, 1943. Biology and ecology This species lives in water weeds and other vegetation in ponds, billabongs, swamps and sluggish streams and rivers in tropical and subtropical eastern Australia. Feeds on detritus. Egg mass presumably a jelly strip containing small eggs. Development direct. Brown (2001) described the anatomy of this species. This species is an intermediate host for the stomach fluke Orthocoelium streptocoelium (Boray, 1982; Beesley et al., 1998). Distribution This species occurs throughout eastern Australia, from Cape York to northern New South Wales. Notes G. isingi and/or G.waterhousei may possibly be conspecific with this species (Brown, 2001). Further reading Beesley, P. L., Ross, G. J.
    [Show full text]