World Commits to a Pollution- Free Planet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10Neurodevelopmental Effects of Childhood Exposure to Heavy
Neurodevelopmental E¤ects of Childhood Exposure to Heavy Metals: 10 Lessons from Pediatric Lead Poisoning Theodore I. Lidsky, Agnes T. Heaney, Jay S. Schneider, and John F. Rosen Increasing industrialization has led to increased exposure to neurotoxic metals. By far the most heavily studied of these metals is lead, a neurotoxin that is particularly dangerous to the developing nervous system of children. Awareness that lead poison- ing poses a special risk for children dates back over 100 years, and there has been increasing research on the developmental e¤ects of this poison over the past 60 years. Despite this research and growing public awareness of the dangers of lead to chil- dren, government regulation has lagged scientific knowledge; legislation has been in- e¤ectual in critical areas, and many new cases of poisoning occur each year. Lead, however, is not the only neurotoxic metal that presents a danger to children. Several other heavy metals, such as mercury and manganese, are also neurotoxic, have adverse e¤ects on the developing brain, and can be encountered by children. Al- though these other neurotoxic metals have not been as heavily studied as lead, there has been important research describing their e¤ects on the brain. The purpose of the present chapter is to review the neurotoxicology of lead poisoning as well as what is known concerning the neurtoxicology of mercury and manganese. The purpose of this review is to provide information that might be of some help in avoiding repeti- tion of the mistakes that were made in attempting to protect children from the dan- gers of lead poisoning. -
Approach to the Poisoned Patient
PED-1407 Chocolate to Crystal Methamphetamine to the Cinnamon Challenge - Emergency Approach to the Intoxicated Child BLS 08 / ALS 75 / 1.5 CEU Target Audience: All Pediatric and adolescent ingestions are common reasons for 911 dispatches and emergency department visits. With greater availability of medications and drugs, healthcare professionals need to stay sharp on current trends in medical toxicology. This lecture examines mind altering substances, initial prehospital approach to toxicology and stabilization for transport, poison control center resources, and ultimate emergency department and intensive care management. Pediatric Toxicology Dr. James Burhop Pediatric Emergency Medicine Children’s Hospital of the Kings Daughters Objectives • Epidemiology • History of Poisoning • Review initial assessment of the child with a possible ingestion • General management principles for toxic exposures • Case Based (12 common pediatric cases) • Emerging drugs of abuse • Cathinones, Synthetics, Salvia, Maxy/MCAT, 25I, Kratom Epidemiology • 55 Poison Centers serving 295 million people • 2.3 million exposures in 2011 – 39% are children younger than 3 years – 52% in children younger than 6 years • 1-800-222-1222 2011 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System Introduction • 95% decline in the number of pediatric poisoning deaths since 1960 – child resistant packaging – heightened parental awareness – more sophisticated interventions – poison control centers Epidemiology • Unintentional (1-2 -
Program Book
SPECIAL SECTION: HOW TO HAVE FUN OUTDOORS Philcon Illustrated PHILADELPHIA’S 73RD CONFERENCE ON SCIENCE FICTION, FANTASY AND HORROR THE GERM-FREE Home of 2009! BLUEPRINTS INSIDE TIME-LAPSE RADIO CLOCKWORK HORSES SOVIET SUPREMACY BY 1967? MENTAL HEALTH BY LIE-DETECTOR THE COMING ERA OF UNDERSEA JAI-ALAI Promise of a golden future Yellow uranium ore from the Colorado Plateau is helping to bring atomic wonders to you Long ago. Indian braves made their war paint from the col ders in medicine, industry, and agriculture. In atomic en orful sandstones of the Colorado Plateau. ergy. scientists also sec a vision of unknown power—which someday may heat and light your home, and propel sub THEY USED URANIUM—Their brilliant yellows came from marines. ships, and aircraft. The Indian’s war paint is on carnotite, the important uranium-bearing mineral. Early in the march again—toward a golden future. this century, this orc supplied radium for the famous scien tists. Marie and Pierre Curie, and later vanadium for spe UCC TAKES AN IMPORTANT PART—The people of Union cial alloys and steels. Carbide locate, mine, and refine uranium orc. They also Today, this Plateau—stretching over parts of Colorado, operate for the Government the huge atomic material* plants I tail. New Mexico, and Arizona —is our chief domestic at Oak Ridge, Tenn., and Paducah. Ky., and the Oak Ridge source of uranium. Here, new communities thrive; jeeps National Laboratory, where radioisotopes arc made. and airplanes replace the burro: Geiger counters supplant FREE: for an illustrated story of the. fascinating uranium the divining rod and miner’* hunch. -
Sound Management of Pesticides and Diagnosis and Treatment Of
* Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4. -
Indoor Air Mercury May 2003
Indoor Air Mercury May 2003 Why is Mercury a Problem in Indoor Air? Mercury is a potent neurotoxin found in a variety of products. It affects the brain, liver and kidneys and can cause developmental disorders in children. Young children and developing fetuses are especially at risk. Metallic, or elemental mercury, is a liquid at room temperature and like any other liquid it evaporates into the air, where it can be inhaled. Exposures can occur in the home when a mercury-containing item, such as a thermometer, breaks and is not properly cleaned up. They can occur in the workplace when mercury or mercury-containing device/materials are not carefully handled and safely managed or when workplace or storage areas are not properly ventilated. Exposures can also occur when children find and play with improperly stored mercury; many cases of mercury poisoning result for this reason.1 When spilled in a small, poorly-ventilated room, mercury can pose significant health threats. Very small amounts of metallic mercury, released into an enclosed space, (i.e., a few drops) can raise air concentrations of mercury to levels that may be harmful to health. The longer people breathe the contaminated air, the greater the risk to their health. In addition, metallic mercury and its vapors are extremely difficult to remove from clothes, furniture, carpet, and other porous items. If these items are not properly disposed or cleaned, the mercury can linger for months or years, continuing to pose a health threat. The risk of exposure to mercury from indoor air is not insignificant. -
Compendium of Chemical Hazards: Mercury
Inorganic Mercury/Elemental Mercury Toxicological Overview Key Points Kinetics and metabolism the main route of exposure to elemental mercury is inhalation and to inorganic mercury compounds is ingestion mercury is distributed to all tissues but mainly accumulates in the kidneys elemental mercury may readily cross the blood-brain barrier elimination predominantly occurs through the urine and faeces Health effects of acute exposure inhalation of elemental mercury may cause respiratory, central nervous system and cardiovascular effects, renal damage and gastrointestinal disturbances ingestion of inorganic mercury compounds may affect the digestive tract, and cause renal damage, cardiovascular effects and skin/eye effects Health effects of chronic exposure inhalation of elemental mercury vapour may cause neurotoxicity, nephrotoxicity and effects on the oral cavity ingestion of inorganic mercury compounds may cause neurotoxicity, digestive tract effects or renal failure the International Agency for Research on Cancer (IARC) classified elemental mercury and mercury compounds as a category 3 carcinogen, ie not classifiable as to the carcinogenicity to humans PHE publications gateway number: 2014790 Published: June 2016 Compendium of Chemical Hazards: Inorganic Mercury/Elemental Mercury Summary of Health Effects The main target organs of elemental and inorganic mercury toxicity are the central nervous system (CNS) and the kidneys. Inhalation is the significant route of exposure to elemental mercury. It is poorly absorbed from the gastrointestinal (GI) tract and is therefore unlikely to cause serious adverse health effects following ingestion. The majority of data available on the toxicity of inorganic mercury compounds concerns exposure by ingestion. Acute inhalation of elemental mercury vapour may cause respiratory effects such as cough, dyspnoea, chest tightness, bronchitis and decreased pulmonary function. -
Towards a Pollution-Free Planet
Towards a Pollution-Free Planet Report of the Executive Director United Nations Environment Programme Advance Copy (long version) Copy Advance unep.org/environmentassembly This advance version of the report "Towards a Pollution-Free Planet" by the Executive Director of the UN Environment Programme is meant to support the preparations for the third session of the UN Environment Assembly. This is not for quotation or citation at this point. Comments to the secretariat are welcome by 14 July. A shorter version of this paper targeting policy makers will be prepared and provided in September. Towards a Pollution-Free Planet Report of the Executive Director, United Nations Environment Programme Advance Copy (long version) Towards a Pollution-Free Planet Table of Contents Table of Contents EXECUTIVE SUMMARY ................................................................................................................. I INTRODUCTION ......................................................................................................................1 1 EVIDENCE OF A POLLUTED PLANET: THE SCIENCE, IMPACTS AND ECONOMIC COSTS ..................................5 1.1 Air pollution ............................................................................................................................5 1.2 Land and soil pollution ...........................................................................................................9 1.3 Freshwater pollution .............................................................................................................11 -
Chemical Pollution and Marine Mammals
PROCEEDINGS OF THE ECS/ASCOBANS/ACCOBAMS JOINT WORKSHOP ON CHEMICAL POLLUTION AND MARINE MAMMALS Held at the European Cetacean Society’s 25th Annual Conference Cádiz, Spain, 20th March 2011 Editor: Peter G.H. Evans ECS SPECIAL PUBLICATION SERIES NO. 55 Cover photo credits: Right: © Ron Wooten/Marine Photobank Left: © Peter G.H. Evans PROCEEDINGS OF THE ECS/ASCOBANS/ACCOBAMS JOINT WORKSHOP ON CHEMICAL POLLUTION AND MARINE MAMMALS Held at the European Cetacean Society’s 25th Annual Conference Cádiz, Spain, 20th March 2011 Editor: Peter G.H. Evans1, 2 1Sea Watch Foundation, Ewyn y Don, Bull Bay, Amlwch, Isle of Anglesey LL68 9SD 2 School of Ocean Sciences, University of Bangor, Menai Bridge, Isle of Anglesey, LL59 5AB, UK ECS SPECIAL PUBLICATION SERIES NO. 55 AUG 2013 a a CONTENTS Reijnders, Peter.J.H. Foreword: Some encouraging successes despite the never ending story ........... 2 Evans, Peter G.H. Introduction ...................................................................................................... 3 Simmonds, Mark P. European cetaceans and pollutants: an historical perspective ........................... 4 Insights from long-term datasets Law, Robin and Barry, Jon. Long-term time-trends in organohalogen concentrations in blubber of porpoises from the UK .................................................................................................................. 9 Jepson, Paul D., Deaville, Rob, Barnett, James, Davison, Nick J., Paterson, Ian A.P., Penrose, Rod, S., Perkins, M.P., Reid, Robert J., and Law, Robin J. Persisent -
An NGO Introduction to Mercury Pollution
INTERNATIONAL POPs ELIMINATION NETWORK An NGO Introduction to Mercury Pollution By Jack Weinberg Senior Policy Advisor International POPs Elimination Network INTERNATIONAL POPs ELIMINATION NETWORK The International POPs Elimination Network (IPEN) is a global network of health and environmental organizations working in more than a hundred countries. The network was originally founded to promote the negotiation of a global treaty to protect human health and the environment from a class of toxic chemicals called Persistent Organic Pollutants (POPs). Then, following adoption by Governments of the Stockholm Convention on POPs, IPEN expanded its mission beyond POPs and now supports local, national, regional and international efforts to protect health and the environment from harms caused by exposure to toxic chemicals. This booklet may only be reproduced for non-commercial purposes with the permission of IPEN. Cover photos top to bottom: 1) Shutterstock® Images, 2) Shutterstock® Images, 3) iStockphoto®, 4) Global Mercury Project, 2007, 5) iStockphoto®, 6) iStockphoto® List of Abbreviations and Acronyms AAP American Academy of Pediatrics ALMR Association of Lamp and Mercury Recyclers AMDE Atmospheric Mercury Depletion Event APCD Air Pollution Control Device ASGM Artisanal and Small-Scale Gold Mining BAT Best Available Techniques BPOM Indonesian Food and Drug Control Agency CDC United States Centers for Disease Control and Prevention CFL Compact Fluorescent Lamp COP Conference of Parties CSO Civil Society Organization EMEA European Agency for -
Towards a Pollution-Free Planet Background Report
Towards a Pollution-Free Planet Background report unenvironment.org/assembly © United Nations Environment Programme, 2017 Published in September 2017 ISBN No: 978-92-807-3669-4 Job No: DTI/2130/PA This document provides background information to the report of the Executive Director of the United Nations Environment Programme to the 3rd session of the United Nations Environment Assembly “Towards a Pollution-Free Planet”. This report has benefited from the oversight of the following individuals in UN Environment: Erik Solheim, Executive Director; Ibrahim Thiaw, Deputy Executive Director; Elliott Harris, Director, New York Office; Ligia Noronha, Director, Economy Division; Jacqueline McGlade, Director, Science Division; Mette Wilkie, Director, Ecosystems Division; Elizabeth Mrema, Director, Law Division; Jian Liu, Chief Scientist; Michele Candotti, Director, Policy and Strategy Division; Naysán Sahba, Director, Communication Division; Jorge Laguna-Celis, Secretary, Governance Affairs Office; Iyad Abumoghli, Director, West Asia Office; Juliette Biao, Director, Africa Office; Jan Dusik, Director, Europe Office; Leo Heileman, Director, Latin America and the Caribbean Office; Fatou Ndoye, Director a.i., North America Office; Dechen Tsering, Director, Asia and the Pacific Office. Coordinating team: Ligia Noronha, Jacqueline McGlade, Tessa Goverse, Fanny Demassieux Contributors: UN Environment: Ines Abdelrazek, Joana Akrofi, Keith Alverson, Wondwosen Asnake, Jacqueline Alvarez, Sandra Averous, Butch Bacani, Sylvia Bankobeza, Sam Barratt, Juan -
Characterization of Human Health and Wildlife Risks from Mercury Exposure in the United States
United States EPA-452/R-97-009 Environmental Protection December 1997 Agency Air Mercury Study Report to Congress Volume VII: Characterization of Human Health and Wildlife Risks from Mercury Exposure in the United States Office of Air Quality Planning & Standards and Office of Research and Development c7o032-1-1 MERCURY STUDY REPORT TO CONGRESS VOLUME VII: CHARACTERIZATION OF HUMAN HEALTH AND WILDLIFE RISKS FROM MERCURY EXPOSURE IN THE UNITED STATES December 1997 Office of Air Quality Planning and Standards and Office of Research and Development U.S. Environmental Protection Agency TABLE OF CONTENTS Page U.S. EPA AUTHORS ................................................................iii SCIENTIFIC PEER REVIEWERS ......................................................iv WORK GROUP AND U.S. EPA/ORD REVIEWERS ...................................... vii LIST OF TABLES .................................................................. viii LIST OF FIGURES ..................................................................ix LIST OF SYMBOLS, UNITS AND ACRONYMS ......................................... x 1. INTRODUCTION ...........................................................1-1 2. HUMAN HEALTH EFFECTS: HAZARD IDENTIFICATION AND DOSE- RESPONSE ................................................................2-1 2.1 Health Hazards Associated with Mercury Exposure ...........................2-1 2.2 Dose-Response to Methylmercury ........................................2-3 2.2.1 Calculation of Methylmercury RfD .................................2-3 -
Recognition and Management of Pesticide Poisonings: Fungicides
CHAPTER 16 HIGHLIGHTS Numerous fungicides in use with varying levels of toxicity Fungicides Most are unlikely to cause systemic poisonings, exceptions being Fungicides are extensively used in industry, agriculture and the home and garden for: • Organomercury 1. protection of seed grain during storage, shipment and germination; compounds • Triazoles 2. protection of mature crops, berries, seedlings, flowers and grasses in the field, in storage and during shipment; • Some copper compounds 3. suppression of mildews that attack painted surfaces; • Isolated EBDC 4. control of slime in paper pulps; and exceptions 5. protection of carpet and fabrics in the home. Approximately 500 million pounds of fungicides are applied worldwide annu- ally (see Chapter 1, Introduction). Fungicides vary enormously in their potential for causing adverse effects in humans. Historically, some of the most tragic epidemics of pesticide poisoning occurred by mistaken consumption of seed grain treated with organic mercury or hexachlorobenzene. However, most fungicides currently in use and registered for use in the United States are unlikely to cause frequent or severe acute systemic poison- ings for several reasons: (1) many have low inherent toxicity in mammals and are inefficiently absorbed; (2) many are formulated as suspensions of wettable powders or granules, from which rapid, efficient absorption is unlikely; and (3) methods of application are such that relatively few individuals are intensively exposed. Apart from systemic poisonings, fungicides as a class also cause irritant injuries to skin and mucous membranes, as well as some dermal sensitization. The following discussion considers the recognized adverse effects of widely used fungicides. In the case of those agents that have caused systemic poisoning, some recommendations for management of poisonings and injuries are provided.