TALK Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

TALK Abstracts Fermi and Jansky 2011 TALK Abstracts F-GAMMA program - review and recent findings: Unification and physical interpretation of the radio spectra variability patterns in Fermi blazars and jet emission from NLSy1s Emmanouil Angelakis L. Fuhrmann, I. Nestoras, R. Schmidt, C. M. Fromm, J. A. Zensus, N. Marchili, T. P. Krichbaum (Max-Planck-Institut fur Radioastronomie), H. Ungerechts, A. Sievers, D. Riquelme (Instituto de Radio Astronoma Milimtrica (IRAM)), M. Perucho-Pla (Departament dAstronomia i Astrofsica. Universitat de Valencia) F-GAMMA program - review and recent findings: Unification and physical interpretation of the radio spectra variability patterns in Fermi blazars and jet emission from NLSy1s The F-GAMMA program aims at understanding the physics at work in AGNs via a multi-frequency monitoring approach. A number of roughly 65 Fermi-GST detectable blazars are being monitored monthly since January 2007 at radio wavelengths. The core program relies on the 100-m Effelsberg telescope operating at 8 frequencies between 2.6 and 43 GHz, the 30-m IRAM telescope observing at 86, 145 and 240 GHz and the APEX 12-m telescope at 345 GHz. For the targeted sources the LAT instrument onboard Fermi-GST provides gamma-ray light curves sampled daily. Recently the program has further expanded with the participation of the Korean VLBI network, the Abastumani optical observatory and the Skinakas observatory for optical polarimetry. Here we will discuss: A. A review of all participating facilities and the main characteristics of the program (sources sample, frequency coverage, sampling etc.). The recent developments in optical coverage (in total power and polarization) will also be discussed. B. We show that, on the basis of their variability pattern, the observed quasi-simultaneous broad- band spectra can be classified to merely 5 classes. The variability for the first 4 is clearly dominated by spectral-evolution while sources of the last class vary self-similarly with almost no apparent shift of the peak frequency. It is shown that the former classes can be attributed to exactly the same two-component system made of (a) a quiescent optically thin spectrum and (b) a superposed flaring event; whereas the latter class must be interpreted in terms of a completely different mechanism. The apparent differences among the classes are explained in terms of a redshift modulus and an intrinsic- source/flare parameters modulus. Numerical simulations we have conducted show that a shock-in-jet model can very well describe the observed behavior. On the other hand, it is shown that the ability of the shock-in-jet to reproduce the behavior of sources that cover a broad spectrum of intrinsic properties indicates its universality. It is concluded that only two mechanisms seem to be producing variability. None of the almost 90 sources used for this study show a switch of class indicating that the variability mechanism is either (a) a finger-print of the source, or (b) that the parameters it may depend on vary at timescales far longer than the monitoring period of almost 4 years. C. Finally, we discuss recent findings of the program such as red-shift bias free correlation between radio and gamma-ray flux density. Furthermore, recently it has been found that besides the blazars and the radio galaxies, that have traditionally been thought to be the gamma-ray emitting AGNs, Narrow Line Seyfert 1 galaxies also show gamma-ray emission. Within the F-GAMMA program radio jet emission has been detected from 3 such sources challenging the belief that jets are associated with elliptical galaxies. The results of their monitoring will be discussed. 1 The gamma-ray blazar B0208-512, a multi-wavelength investigation Jay Blanchard (School of Mathematics & Physics, University of Tasmania, Australia), Jim Lovell (School of Mathematics & Physics, University of Tasmania, Australia), Roopesh Ojha (NASA Goddard Space Flight Center, USA), Matthias Kadler (University of Wurzburg, Germany), Roberto Nesci (University La Sapienza, Italy), Philip Edwards (CSIRO Astronomy and Space Science, ATNF, Australia), Michael Dutka (Catholic University, USA), Tapio Pursimo (Nordic Optical Telescope, Santa Cruz de La Palma, Spain), John Dickey (School of Mathematics & Physics, University of Tasmania, Australia) PKS B0208-512 is a blazar at a redshift of 1.0. VLBI observations show a strong core and a one sided jet. It was detected by the ROSAT all sky survey as an X-ray source and as a gamma-ray source by EGRET. Since the launch of Fermi, PKS B0208-512 has shown flaring behaviour in the gamma-ray band on at least three separate occasions. VLBI and radio light-curve monitoring observations of PKS B0208-512 is being conducted as part of the TANAMI program. Single-dish flux-density monitoring data obtained with the 30m Ceduna telescope date back to 2004 and show strong flaring behaviour in the radio band as well. Additional radio observations have been made using the Australia Telescope Compact Array and the source has been monitored in the optical band by the REM telescope. Archival X-ray and UV data have been obtained from the Swift satellite and its evolving parsec scale structure is being monitored with VLBI observations using the TANAMI array. We present the results of these multiwavelength observations and discuss the implications they have for the origin and nature of high energy emission from this blazar. In particular, we investigate the non simultaneous nature of the flaring at different frequencies. Modeling broadband spectra and variability of blazars Markus Böttcher (Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA) In this talk I will present a review of the current state-of-the-art of models for the broadband spectral energy distributions and variability of blazars. Both leptonic and hadronic models for blazar emission will be considered, with special attention to possible diagnostics to distinguish between those two classes of models. I will highlight areas of future progress to be made with continued Fermi as well as future CTA observations. A Diagnostic for Determining the Location of the GeV Emission in powerful blazars Amanda Dotson (University of Maryland Baltimore County), Markos Georganopoulos (University of Maryland Baltimore County,NASA/GSFC) , Demosthenes Kazanas (NASA/GSFC), Eric Perlman (Florida Institute of Technology) A central issue currently debated in the literature is how far from the black hole is the sl Fermi observed GeV emission of powerful blazars emitted. Here we present a clear diagnostic tool for testing whether the GeV emission site is located within the sub-pc broad emission line (BLR) region or further out in the few pc scale molecular torus environment. Within the BLR the scattering takes place at the onset of the Klein-Nishina regime, causing the electron cooling time to become practically energy independent and as a result, the variation of high-energy emission is expected to be achromatic. Contrarily, if the blazar is outside the BLR, the expected GeV variability is energy-dependent and with amplitude increasing with energy. We demonstrate this using time-dependent numerical simulations of blazar variability. The proposed work holds the promise of settling this important issue. 2 The ANTARES neutrino telescope Thomas Eberl (Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen) for the ANTARES collaboration The ANTARES deep-sea neutrino telescope currently is the largest neutrino detector in the North- ern Hemisphere. The instrument consists of a three-dimensional array of 885 photomultiplier tubes, arranged in 12 lines anchored at a depth of 2500m in the Mediterranean Sea, 40km offshore from Toulon (France). An additional instrumented line is used for environmental monitoring and for R&D towards acoustic neutrino detection. The photomultiplier tubes detect the Cherenkov radiation of charged secondary particles produced by high-energy neutrinos interacting in or around the detector. Charged-current interactions of muon neutrinos is the reaction channel of central interest. The tra- jectories of the resulting muons are reconstructed with high precision, revealing the direction of the incoming neutrinos. ANTARES is taking data with its full 12 line configuration since May 2008, and has been operated before in a 5 and 10 line setup for more than a year. The calibration, performance and long-term stability of the detector will be discussed. Studies have been underway to search for neutrino point sources in the ANTARES data since 2007. Results from these studies and the sensitivity of the telescope will be discussed. Before Fermi met Jansky Phil Edwards (CSIRO Astronomy & Space Science) Radio monitoring of gamma-ray emitting AGN in the EGRET era will be reviewed and key findings summarised, and efforts underway to continue, and improve upon, these studies in the Fermi era described. Blazar observations above 100 GeV with VERITAS Manel Errando (Barnard College/Columbia University) on behalf of the VERITAS collaboration The VERITAS array of 12-m atmospheric-Cherenkov telescopes in southern Arizona is one of the world’s most sensitive detectors of VHE (E>100 GeV) gamma rays. There are 50 extragalactic sources which are known to emit VHE photons, including blazars, radio galaxies, and starburst galaxies. Blazar observations are one of the VERITAS Collaboration’s Key Science Projects. More than 400 hours per year are devoted to this program and 100 blazars have already been observed with the array, in most cases with the deepest-ever VHE exposure. These observations have resulted in 21 detections, including 10 VHE discoveries, all of them with supporting multiwavelength observations. Recent highlights from VERITAS extragalactic observation program and the collaboration’s long-term blazar observation strategy will be presented. A Physical Model for the Revised Blazar Sequence Justin Finke (US Naval Research Laboratory) and Charles Dermer (US Naval Research Laboratory) The blazar sequence is reflected in a plot of the peak luminosity versus peak frequency of the syn- chrotron component of blazars.
Recommended publications
  • High Resolution Radio Astronomy Using Very Long Baseline Interferometry
    IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 066901 (32pp) doi:10.1088/0034-4885/71/6/066901 High resolution radio astronomy using very long baseline interferometry Enno Middelberg1 and Uwe Bach2 1 Astronomisches Institut, Universitat¨ Bochum, 44801 Bochum, Germany 2 Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany E-mail: [email protected] and [email protected] Received 3 December 2007, in final form 11 March 2008 Published 2 May 2008 Online at stacks.iop.org/RoPP/71/066901 Abstract Very long baseline interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on active galactic nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction to the technique of radio interferometry, focusing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations. This article was invited by Professor J Silk. Contents 1. Introduction 1 2.9. The future of VLBI: eVLBI, VLBI in space and 2. The theory of interferometry and aperture the SKA 10 synthesis 2 2.10. VLBI arrays around the world and their 2.1. Fundamentals 2 capabilities 10 2.2. Sources of error in VLBI observations 7 3. Astrophysical applications 11 2.3. The problem of phase calibration: 3.1. Active galactic nuclei and their jets 12 self-calibration 7 2.4.
    [Show full text]
  • EARLY SCIENCE with the KOREAN VLBI NETWORK: the QCAL-1 43 Ghz CALIBRATOR SURVEY
    The Astronomical Journal, 144:150 (6pp), 2012 November doi:10.1088/0004-6256/144/5/150 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. EARLY SCIENCE WITH THE KOREAN VLBI NETWORK: THE QCAL-1 43 GHz CALIBRATOR SURVEY Leonid Petrov1, Sang-Sung Lee2, Jongsoo Kim2, Taehyun Jung2, Junghwan Oh2,3, Bong Won Sohn2,3, Do-Young Byun2,3, Moon-Hee Chung2, Do-Heung Je2, Seog-Oh Wi2, Min-Gyu Song2,JimanKang2, Seog-Tae Han2,3, Jung-Won Lee2, Bong Gyu Kim2,3, Hyunsoo Chung2, and Hyun-Goo Kim2 1 Astrogeo Center, Falls Church, VA 22043, USA 2 Korean VLBI Network, Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea; [email protected] 3 Yonsei University Observatory, Yonsei University, Seongsan-ro 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea Received 2012 July 24; accepted 2012 September 4; published 2012 October 18 ABSTRACT This paper presents the catalog of correlated flux densities in three ranges of baseline projection lengths of 637 sources from a 43 GHz (Q band) survey observed with the Korean VLBI Network. Of them, 14 objects used as calibrators were previously observed, but 623 sources have not been observed before in the Q band with very long baseline interferometry (VLBI). The goal of this work in the early science phase of the new VLBI array is twofold: to evaluate the performance of the new instrument that operates in a frequency range of 22–129 GHz and to build a list of objects that can be used as targets and as calibrators.
    [Show full text]
  • Exploring the Cosmic Frontier Astrophysical Instruments for the 21St Century ABSTRACT BOOK
    Exploring the Cosmic Frontier Astrophysical Instruments for the 21st Century Berlin, 18{21 May 2004 ABSTRACT BOOK Talks 3 Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century Seesion I: Future Astrophysical Facilities Radio Facilities R. Ekers ATNF, Sydney, Australia Five decades ago, astronomers ¯nally broke free of the boundaries of light when a new science, radio astronomy, was born. This new way of 'seeing' rapidly uncovered a range of unexpected objects in the cosmos. This was our ¯rst view of the non-thermal universe, and our ¯rst unobscured view of the universe. In its short life, radio astronomy has had an unequalled record of discovery, including four Nobel prizes: Big-Bang radiation, neutron stars, aperture synthesis and gravitational radiation. New technologies now make it possible to construct new and upgraded radio wavelength arrays which will provide a powerful new generation of facilities. Radio telescopes such as the SKA together with the upgraded VLA will have orders of magnitude greater sensitivity than existing facilities. They will be able to study thermal and non-thermal emission from a wide range of astrophysical phenomena throughout the universe as well as greatly extending the range of unique science accessible at radio wavelengths. Millimeter, submillimeter and far-infrared astronomy facilities J. Cernicharo IEM, Madrid I will present the future observatories Herschel and ALMA and their capacities for the observation of the Universe in the wavelength range 60-3000 microns. From the solar system to the most distant galaxies, both instruments will allow to observe the cold gas and dust with an excellent frequency coverage and with very high angular resolution.
    [Show full text]
  • ASTRONET ERTRC Report
    Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16!
    [Show full text]
  • ATNF Science Priorities
    ATNF Science Priorities Australia Telescope National Facility ATNF Science in 2010-2015: Part 1 – Overview Lewis Ball & Naomi McClure-Griffiths Robert Braun, Philip Edwards, Ilana Feain, George Hobbs, Simon Johnston Version 1.0: 8 August 2008 Context and purpose of this document Over the period 2010-2015 the ATNF needs to deliver ASKAP, a $100M new facility, restructure its operation to accommodate the new facility, maintain the world-class scientific productivity of its telescopes that are used by astronomers from around the world, and continue to implement Australia’s strategy of maximising Australian involvement in the SKA. This document comprises five parts, an overview of the expected scientific priorities that will be addressed by the full complement of ATNF telescopes and instrumentation, and four attempts to detail the science expected to be the priority for users of specific telescopes. It is important that the documents are treated as a set as they have been prepared as such and no one part is expected to stand alone. The priorities outlined in this document have been identified through a process of extensive user consultation. They draw on, for example, the millimetre white paper, the Science with Parkes forum on 5 November 2007, the Compact Array Science day in June 2008, and the extensive ASKAP science case. Ongoing feedback on the document and the priorities identified here are welcomed. This document is intended to be a part of the Future ATNF Operations plan. A preliminary version of that plan was written for the Australia Telescope Steering Committee in December 2007 and provided publicly soon after.
    [Show full text]
  • European VLBI Network Newsletter
    European VLBI Network Newsletter Number 37 January 2014 Contents Message from the Chairman of the EVN Board of Directors .................................................................................... 2 Call for the EVN Proposals: Deadline 1st February 2014 ........................................................................................... 3 EVN Science Highlights .............................................................................................................................................. 6 Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action .................................................... 6 No evidence for a counter-jet in the TeV-emitting radio galaxy IC 310 ................................................................ 7 EVN/JIVE Technical Developments ............................................................................................................................ 8 A phase error related to the WSRT phased array.................................................................................................. 8 Phased array mode at the JIVE SFXC software correlator ................................................................................... 10 “OLD” EVN Scheduler’s Report: January 2014 ........................................................................................................ 11 Reports from EVN Institutes .................................................................................................................................... 14 JIVE 20
    [Show full text]
  • The Title of My
    Research in Astron. Astrophys. Vol.0 (20xx) No.0, 000–000 Research in http://www.raa-journal.org http://www.iop.org/journals/raa Astronomy and (LATEX: main.tex; printed on April 16, 2021; 0:09) Astrophysics East Asian VLBI Network Observations of Active Galactic Nuclei Jets: Imaging with KaVA+Tianma+Nanshan Yu-Zhu Cui1;2, Kazuhiro Hada1;2, Motoki Kino2;3, Bong-Won Sohn4;5;6, Jongho Park7, Hyun-Wook Ro4;5, Satoko Sawada-Satoh8, Wu Jiang9;11, Lang Cui10;11, Mareki Honma1;2;12, Zhi-Qiang Shen9;11, Fumie Tazaki2, Tao An9;11, Ilje Cho4;6, Guang-Yao Zhao4;13, Xiao-Peng Cheng4, Kotaro Niinuma8, Kiyoaki Wajima4, Ying-Kang Zhang9, Noriyuki Kawaguchi2, Juan-Carlos Algaba14, Shoko Koyama7, Tomoya Hirota2, Yoshinori Yonekura15, Nobuyuki Sakai4, Bo Xia9, Yong-Bin Jiang9, Lin-Feng Yu9, Wei Gou9, Ju-Yeon Hwang4, Yong-Chen Jiang9, Yun-Xia Sun9, Dong-Kyu Jung4, Hyo-Ryoung Kim4, Jeong-Sook Kim4, Hideyuki Kobayashi2, Jee-Won Lee4, Jeong-Ae Lee16, Hua Zhang10, Guang-Hui Li10, Zhi-Qiang Xu9, Peng Li10, Jung-Hwan Oh4, Se-Jin Oh4, Chung-Sik Oh4, Tomoaki Oyama2, Duk-Gyoo Roh4, Katsunori-M. Shibata2, Wen Guo9, Rong-Bing Zhao9, Wei-Ye Zhong9, Jin-Qing Wang9, Wen-Jun Yang10, Hao Yan10, Jae-Hwan Yeom4, Bin Li9, Xiao-Fei Li10, Jian-Ping Yuan10, Jian Dong9, Zhong Chen9, Kazunori Akiyama17;18, Keiichi Asada7, Do-Young Byun4, Yoshiaki Hagiwara19, Jeffrey Hodgson4, Tae-Hyun Jung4, Kee-Tae Kim4, Sang-Sung Lee4, Kunwoo Yi20, Qing-Hui Liu9, Xiang Liu10;11, Ru-Sen Lu9;11;21, Masanori Nakamura7, Sascha Trippe20, Na Wang10;11, Xue-Zheng Wang9 and Bo Zhang9 1 Department of
    [Show full text]
  • European VLBI Network Newsletter
    European VLBI Network Newsletter Number 39 September 2014 Contents Message from the Chairman of the EVN Board of Directors .................................................................................... 2 Call for the EVN Proposals ......................................................................................................................................... 3 EVN Science Highlights .............................................................................................................................................. 7 EVN and eMERLIN constrain the progenitor system and environs of SN 2014J ................................................... 7 EVN/JIVE Technical Developments ............................................................................................................................ 9 The JIVE UniBoard Correlator (JUC) ....................................................................................................................... 9 EVN Scheduler’s Report ........................................................................................................................................... 12 Reports from EVN Institutes .................................................................................................................................... 13 The New Radome for the Onsala Space Observatory 20-m Telescope ............................................................... 13 Recent and upcoming meetings .............................................................................................................................
    [Show full text]
  • The EVN and JIVE
    What can VLBI do for your research? The EVN and JIVE By Dr. Francisco Colomer Joint Institute for VLBI ERIC (JIVE) EAVN @ PyonengChang (Korea), 4-7 September 2018 Contents • The European VLBI Network (EVN) • The Joint Institute for VLBI ERIC (JIVE) • (A few) recent VLBI results • Globalization of VLBI See also poster: European VLBI Network (EVN) • The EVN is a network of radio telescopes located primarily in Europe and Asia, with additional antennas in South Africa and Puerto Rico, which performs high angular resolution observations of cosmic radio sources. • It is the most sensitive VLBI array in the world, thanks to the collection of extremely large telescopes that contribute to the network, operating from 1.4 GHz to 45 GHz (some up to 90 GHz), also in real-time (eEVN). • The Joint Institute for VLBI ERIC (JIVE) correlates the EVN data and provides expert support to EVN users. http://www.evlbi.org/ www.jive.eu / www.evlbi.org EVN+MERLIN Joint Institute for VLBI ERIC (JIVE) An European Research Infrastructure Consortium (ERIC) • 6 partner countries: NL (host), FR, ES, UK, SE, LV • 4 associated institutions: INAF (IT), NRF (SA), MPIfR (DE), NAOC (Cn) JIVE and EVN Joint Institute for VLBI ERIC (JIVE) • Supports the European VLBI Network • Radio astronomy at its highest angular resolution • operations JIVE headquarters in Dwingeloo, the Netherlands. • correlation • data acquisition • Research & development • Software (CASA 5.3) • hardware • e-VLBI • Science support • Training http://www.jive.eu/ EVN/JIVE collaboration with KVN First e-VLBI fringes between EVN antennas (Onsala and Yebes) and two stations of the Korean VLBI Network at 22 GHz.
    [Show full text]
  • CASA News Issue 6 • 9 May 2018
    CASA News Issue 6 • 9 May 2018 From the Lead Ryan Raba I would like to start by saying thanks to everyone within the Common Astronomy Software Applications (CASA) development team and user community for welcoming me to this position and showing patience as I come up to speed on the complexity of this environment. CASA is a fascinating collection of utilities born from decades of hard work and deep scientific understanding. It is a profoundly challenging and rewarding endeavor to chart a course for something that is both science research and an operational program, a support library as well as a standalone application, used extensively by two observatories with different cultures and work processes, and included in a wide variety of external projects from around the world. The CASA team has had a busy six months since the last newsletter. We hosted the annual CASA Users Committee gathering to discuss progress and feedback on a variety of topics relevant to the user community. We also conducted an internal CASA Development Face-to-Face meeting bringing together developers from the National Radio Astronomy Observatory (NRAO), the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), and the National Astronomical Observatory of Japan (NAOJ) for the first time in several years. We are wrapping up the CASA 5.3 release with several new features in imaging and calibration and making very good progress on a High Performance Computing (HPC) multi-core parallelization mode for CASA processing. Support for the Very Large Array (VLA) Sky Survey, as well as upcoming Atacama Large Millimeter/submillimeter Array (ALMA) needs for Cycle 6, continue to drive testing, bug fixing, and an overall increase in maturity.
    [Show full text]
  • The Program & Abstracts Book
    EVN Symposium & Users Meeting 2016 Table of Contents 2 Welcome .............................................................................................................................. 3 General Information .......................................................................................................... 4 Schedule of Events ............................................................................................................. 8 List of Posters ...................................................................................................................17 AGN Surveys .....................................................................................................................22 Astrometry, Geodesy and Space Applications ...............................................................27 VLBI Technology ...............................................................................................................32 Starbursts and Extragalactic Masers ..............................................................................34 VLBI Arrays ........................................................................................................................38 Stellar Evolution and Stellar Masers ...............................................................................39 Transients ..........................................................................................................................43 AGN Astrophysical Processes ..........................................................................................45
    [Show full text]
  • East Asia VLBI Network Observations of the Tev Gamma-Ray Burst
    East Asia VLBI Network observations of the TeV Gamma-Ray Burst 190114C Tao An1,2*, Om Sharan Salafia3, Yingkang Zhang1,2, Giancarlo Ghirlanda3, Giovannini Giovannini4,5, Marcello Giroletti4, Kazuhiro Hada6, Giulia Migliori4,5, Monica Orienti4, and Bong Won Sohn7 1Shanghai Astronomical Observatory, Key laboratory of Radio Astronomy, CAS, Nandan Road 80, Shanghai 200030, China; 2University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, 100049 Beijing, China; 3Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, Italy; 4Istituto Nazionale di Astrofisica, Istituto di Radioastronomia, via Gobetti 101, I40129, Bologna, Italia; 5University of Bologna, Department of Physics and Astronomy, via Gobetti 83, I40129, Bologna, Italia; 6National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; 7Korea Astronomy and Space Science Institute, Yuseong-gu, Daejeon 34055, Korea Received , 2019; accepted , 2019 Observations of gamma-ray bursts (GRBs) at Very High Energy (VHE) offer a unique opportunity to investigate particle accelera- tion processes, magnetic fields and radiation fields in these events. Very Long Baseline Interferometry (VLBI) observations have been proven to be a powerful tool providing unique information on the source size of the GRBs at mas scales, as well as their accurate positions and possible expansion speeds. This paper reports on the follow-up observations of GRB 190114C, the first ever GRB detected with high significance at TeV photon energies by the MAGIC telescope, conducted with the East Asia VLBI Network (EAVN) at 22 GHz on three epochs, corresponding to 6, 15 and 32 days after the burst. The derived maps do not show any significant source above 5σ.
    [Show full text]