A Numerical Study of Performance of the Small
Total Page:16
File Type:pdf, Size:1020Kb
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/7 ( 104 ) 2020 22. Lovska, A. (2018). Simulation of Loads on the Carrying Structure of an Articulated Flat Car in Combined Transportation. Interna- tional Journal of Engineering & Technology, 7 (4.3), 140. doi: https://doi.org/10.14419/ijet.v7i4.3.19724 23. Fomin, O., Gerlici, J., Lovska, A., Kravchenko, K., Prokopenko, P., Fomina, A., Hauser, V. (2019). Durability Determination of the Bearing Structure of an Open Freight Wagon Body Made of Round Pipes during its Transportation on the Railway Ferry. Commu- nications - Scientific Letters of the University of Zilina, 21 (1), 28–34. 24. Kučera, P., Píštěk, V. (2017). Testing of the mechatronic robotic system of the differential lock control on a truck. International Journal of Advanced Robotic Systems, 14 (5), 172988141773689. doi: https://doi.org/10.1177/1729881417736897 25. Pistek, V., Klimes, L., Mauder, T., Kucera, P. (2017). Optimal design of structure in rheological models: an automotive application to dampers with high viscosity silicone fluids. Journal of Vibroengineering, 19 (6), 4459–4470. doi: https://doi.org/10.21595/jve.2017.18348 26. Lukin, V. V., Shadur, L. A., Koturanov, V. I., Hohlov, A. A., Anisimov, P. S. (2000). Konstruirovanie i raschet vagonov. Moscow, 731. 27. Vatulia, G., Falendysh, A., Orel, Y., Pavliuchenkov, M. (2017). Structural Improvements in a Tank Wagon with Modern Software Packages. Procedia Engineering, 187, 301–307. doi: https://doi.org/10.1016/j.proeng.2017.04.379 28. Molotnikov, V. Ya. (2017). Tehnicheskaya mehanika. Sankt-Peterburg, 476. 29. Filatov, Yu. E. (2017). Vvedenie v mehaniku materialov i konstruktsiy. Sankt-Peterburg, 320. 30. DSTU 7598:2014. Vaho ny vantazhni. Zahalni vymohy do rozrakhunkiv ta proektuvannia novykh i modernizovanykh vahoniv koliyi 1520 mm (nesamokhidnykh) (2015). Kyiv, 162. 31. GOST 33211-2014. Vagony gruzovye. Trebovaniya k prochnosti i dinamicheskim kachestvam (2016). Moscow, 54. 32. BS EN 12663-2. Railway applications. Structural requirements of railway vehicle bodies. Freight wagons (2010). British Standards Document. doi: https://doi.org/10.3403/30152552u Розроблена нова форма тандемної лопатi з вдосконаленим UDC 629.7.035.7 розташуванням профiлiв по вiдношенню до вiдомих гвинтiв, в яких DOI: 10.15587/1729-4061.2020.199486 профiлi розташовуються подiбно до тандемного крила лiтака. Запропоновано нове розташування профiлiв по висотi лопатi. За основу для проектування було взяте розташування профiлiв подiб- A NUMERICAL STUDY не до тандемних лопаткових вiнцiв компресорiв та вентиляторiв. Такий пiдхiд дозволив лiквiдувати аеродинамiчне затiнення лопа- тей та пiдвищити їхню аеродинамiчну навантаженнiсть. Для OF PERFORMANCE OF об’єднання лопатей в кiнцевiй частинi застосована спiралеподiбна перетинка, яка дозволила значно знизити кiнцевi вториннi втрати THE SMALL-SIZE UAV за рахунок запобiгання утворення кiнцевого вихору. Для дослiдження характеристик тандемних гвинтiв та PUSHING TANDEM структури газодинамiчної течiї навколо них розроблена розра- хункова модель гвинта в перiодичнiй постановцi, що дозволи- PROPELLER WITH ло значно скоротити час розрахунку. Моделювання здiйснюва- лось в програмному комплексi ANSYS CFX, в якому реалiзований алгоритм вирiшення нестацiонарних осереднених по Рейнольдсу JOINED BLADES рiвнянь Нав'є-Стокса замкнутих моделлю турбулентностi SST M. Kulyk Ментера. В результатi моделювання отриманi характеристики тандемного гвинта, якi пiдтвердили правильнiсть вибраного пiдхо- Doctor of Technical Sciences, ду щодо проектування тандемної лопатi. ККД розробленого гвинта Professor, Head of Department* досягає рiвня 75 % на розрахунковому режимi, що є дуже хорошим F. Kirchu показником для малорозмiрних гвинтiв, якi працюють при низь- PhD, Associate Professor* ких значеннях числа Рейнольдса. Для порiвняння, ККД класичних, Е-mail: [email protected] подiбних по геометричним характеристикам гвинтiв, знаходиться в межах 50–60 %. При використаннi тандемного гвинта з об’єдна- Hussein Hanesh ними лопатями як штовхаючого рушiя вiдзначено зниження його Postgraduate Student* тяги на рiвнi 3–4 %, що обумовлено утворенням зони розрiдження *Department of Aviation Engines у втулковiй частинi та в областi кока National Aviation University Ключовi слова: повiтряний гвинт, кiнцевий вихор, стрiчка Liubomyra Huzara ave., 1, Мьобiуса, коробчатий гвинт, тандемний гвинт Kyiv, Ukraine, 03058 Received date 22.01.2020 Copyright © 2020, M. Kulyk, F. Kirchu, Hussein Hanesh Accepted date 20.03.2020 This is an open access article under the CC BY license Published date 24.04.2020 (http://creativecommons.org/licenses/by/4.0) 1. Introduction of jet, and then turbofan gas turbine engines significantly reduced the use of propellers. However, it should be noted The propeller, as a thruster, has been known for a very that today the propeller has no competitors in terms of prof- long time and has been the only possible mover in aviation itability at moderate flight speeds (M≤0.6, and in the case for many years. The increase in flight speed, the emergence of coaxial counter-rotating fans, M≤0.8). Also, propellers 40 Applied mechanics have no competitors in the application on wing-in-ground namic loading of the propeller blades, an increase in periph- effect crafts and air-cushion ships, where it is necessary eral velocity is necessary, which leads to a forced decrease in that the propeller throw a large mass of air at a low speed, the diameter dimensions, and this in turn reduces the thrust which is impossible to achieve with jet engines. The main that the propeller produces. This circumstance forces us disadvantages of propellers that limit their use include low to use wide-chord blades with a small aspect ratio and the aerodynamic loading (limited by the number of blades), sig- scheme of counter-rotating propellers. An intermediate place nificant diametric dimensions, the need for a gearbox and a is occupied by tandem propellers, which were developed in mechanism for the blade pitch change, significant tip losses the early 1950s. However, like wide-chord blades with low (associated with the formation of tip vortices and their inter- aspect ratio, tandem propellers have one significant disad- action between each other and with the airplane). vantage – a significant level of secondary losses, which are However, despite the inherent disadvantages, an increased caused by the tip vortex flows, which are formed as a result interest in propellers as thruster has recently begun to show. of the air flow in the tip part of the blade. This is mainly due to the rapid development of subsonic un- The solution to the problem of improving the propeller manned aircrafts and methods of numerical gas dynamics, efficiency goes in different ways. It depends on the design the use of which allows more efficient (optimal) design and and scheme of the propeller. There is a whole direction research. Also in recent years, the interest of designers in the of research aimed at reducing the secondary losses of “open rotor” system with multi-blade wide-chord counter-ro- propellers due to the tip effects. In [1], to reduce the tip tating propellers has increased significantly. losses of propellers, the end of the blade is specially shaped. In general, modern tandem counter-rotating propellers In [2, 3], studies on the use of finite plates are presented. have an optimal ratio between aerodynamic loading on the In [4], it was proposed to install a number of stationary blade and the level of secondary losses; however, they have a blades located downstream of the propeller for the untwist- complex structure and require the use of powerful gearboxes ing of the tip vortex. Such measures can reduce secondary for their rotation. losses and increase propeller efficiency by an average of The intermediate position between single-row and dou- 3–5 %, but they do not solve the problem of propeller ble-row counter-rotating propellers is occupied by spiral dimensions and increase the aerodynamic loading on the and tandem propellers. Tandem propellers are conceptually blade. In [5], it was proposed to use forward swept blades. similar to a biplane wing, and joining of the blades should This approach allows you to increase aerodynamic loading theoretically lead to a significant decrease in the intensity of and reduce secondary propeller losses. However, from the the tip vortex and increase the aerodynamic loading of the operation point of view, a significant torque is acting on blade compared to the classical design of the propeller. the forward swept blades, which leads to a change in the Thus, the task of finding and researching ways and meth- propeller blade geometry during operation and the intensi- ods of reducing the level of propeller tip losses is constantly fication of aeroelastic vibrations. relevant, and the tandem scheme looks quite attractive from Another approach is the use of wide-chord blades the point of view of the ratio of overall dimensions and ef- and counter-rotating double row propellers. It allows ficiency. For small UAV propellers, the task of increasing you to reduce the diametrical dimensions and increase their efficiency is even more relevant, since they work at low the aerodynamic load on the rotor blade. However, when Reynolds numbers (Re=104–105). Unlike propellers operat- applying a multiblade scheme with wide-chord blades of ing at large Reynolds numbers (Re>106, η=0.8–0.9), their small aspect ratio, secondary losses rapidly increase due to efficiency is much lower (η=0.4–0.6). the increased intensity and interaction of the tip vortices. In general, it should be noted that tandem propellers The work [6] presents studies of counter-rotating propel- allow a comprehensive approach to solving the problem of lers with different sweeps of the first and second rows of efficiency and reducing weight and size characteristics, how- blades. For the first row, a backward sweep is used, and for ever, along with the known advantages, theoretical methods the second – forward sweep. The different diameters of the for their design are practically absent, which creates signif- first and second rows and the optimal location along the icant difficulties in the design and use of such propellers.