Dynamic Wavelength Routing in All Optical Mesh Network

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Wavelength Routing in All Optical Mesh Network CORE Metadata, citation and similar papers at core.ac.uk Provided by Research Online @ ECU Edith Cowan University Research Online ECU Publications Pre. 2011 2005 Dynamic Wavelength routing in all optical mesh network Kungmang Lo Edith Cowan University Daryoush Habibi Edith Cowan University Quoc Viet Phung Edith Cowan University Hoang Nghia Nguyen Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Engineering Commons 10.1109/APCC.2005.1554043 This is an Author's Accepted Manuscript of: Lo, K. , Habibi, D. , Phung, Q.V. , & Nguyen, H. N. (2005). Dynamic Wavelength routing in all optical mesh network. Proceedings of Asia Pacific Conference on Communications. (pp. 178-182). Perth, WA. IEEE. Available here © 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ecuworks/2918 2005 Asia-Pacific Conference on Communications, Perth, Western Australia, 3 - 5 October 2005. Dynamic Wavelength Routing in All-Optical Mesh Networks Kungmeng Lo, Daryoush Habibi, Senior Member, IEEE, Quoc Viet Phung, and Hoang Nghia Nguyen SCHOOL OF ENGINEERING AND MATHEMATICS EDITH COWAN UNIVERSITY PERTH, AUSTRALIA Abstract— Wavelength-division multiplexing (WDM) offers the capability to handle the increasing demand of network traffic in a manner that takes advantage of already deployed optical fibers. Lightpaths are optical connections carried end-to-end over a wavelength on each intermediate link. Wavelengths are the main resource in WDM networks. Due to the inherent channel constraints, a dynamic control mechanism is required to efficiently utilize the resource to maximize lightpath connections. Fig. 1. A 6 nodes and 9 links topology In this paper, we investigate a class of adaptive routing called Dynamic Wavelength Routing (DWR), in which wavelength converters (WCs) are not utilized in the network. The objective is constraint is removed, thus reducing network blocking. WCs, to maximize the wavelength utilization and reduces the blocking probability in an arbitrary network. This approach contains two however, are costly devices. It is not cost-efficient to set up sub-algorithms: Least Congestion with Least Nodal-degree Routing WC at each routing node. Therefore, one possible scheme to algorithm (LCLNR) and Dynamic Two-end Wavelength Routing address this issue is to set up a sparse number of WCs at algorithm (DTWR). We demonstrate that DWR can significantly some specific selected nodes to achieve adequate cost-effective improve the blocking performance, and the results achieved as performance [7]. Alternatively, call requests need to be as- good as placing sparse WCs in the network. signed appropriate routes and wavelengths over the lightpaths I. INTRODUCTION to maximize throughput of traffic pattern. This consideration The relentless need and continuously increasing demand is known as the routing and wavelength assignment (RWA) for telecommunication leads to wavelength-routed all-optical problem [8] [9]. WDM networks as the broadband backbone data transport The study of RWA algorithms is based on traffic load networks [1]. In WDM, the optical spectrum is divided into assumptions. If the traffic patterns in the network are organized many non-overlapping wavelength channels. Multiple kinds in advance, the traffic variations can be formulated as a of traffic are multiplexed onto a fiber by using different mixed-integer linear program (MILP) to yield an optimum wavelength channels. Wavelength routers can switch the input solution [10]. However, with dynamic traffic, each lightpath optical signals according to their wavelengths. Lightpath is an request between source and destination (s-d) pair arrives at optical channel, which is carried end-to-end optical connection random, and has a random holding time; after which it is from a source node to a destination node without any interme- tore down and the resources are set free. The objective in the diate electronics, created by the allocation of the wavelength dynamic traffic case is to efficiently select routes and assign throughout each intermediate link [2] [3]. Thus, lightpath is wavelengths to connections in the network at any time so as a direct communication path’ between any two nodes. If no to minimize the connection blocking, or maximize the number wavelength conversion is available in networks, lightpath must of call connections. Both static and dynamic traffic problems use the same wavelength on all the links along its path from the are NP-complete [10]. source to the destination edge node. In Figure 1, for example, RWA problem can be decoupled into the routing sub- ¡ if a call request on a route 1-2-4-6 is assigned wavelength problem and the wavelength assignment sub-problem. Among to establish a lightpath, then the links 1-2, 2-4 and 4-6 need proposed wavelength assignment algorithms, the first-fit as- ¡ to have free to support this connection. This restriction is signment (FF) [11] is the most popular and easy to implement called the wavelength continuity constraint. algorithm. This algorithm selects wavelength according to an Wavelength continuity constraint can lead to the inefficient ascending order from the available wavelengths along the utilization of wavelength channels and high blocking proba- path. In general, the first-fit assignment achieves a lower call bility. Thus, the task of efficient utilization of wavelengths in blocking probability than the random assignment especially optical networks becomes an important issue. when the number of wavelength channels per link is small. An idea that employs wavelength converters (WCs) in all- Routing strategy can be classified into two types: fixed and optical WDM networks to increase wavelength utilization adaptive. In fixed routing, the routing path between any two has been proposed [4] [5] [6]. The wavelength continuity end-nodes is pre-defined. The candidate path number can be 0-7803-9132-2/05/$20.00 ©2005 IEEE. 178 one or more. Normally, paths are chosen for the shortest paths II. DYNAMIC WAVELENGTH ROUTING or the minimum cost paths. Adaptive routing determines routes A. Assumptions after considering the current network state when a connection The objective of DWR is to minimize blocking probability request arrives. This sort of routing is more efficient than and maximize wavelength utilization. DWR requires extensive the fixed routing. Thus, recent studies on routing strategies support from the control and management protocols to con- mostly focus on adaptive routing [12]. One of the earliest tinuously update the current network state information. The proposed adaptive routing strategies is Least Loaded Routing link state routing algorithm is considered in our study. Our (LLR) [5]. LLR chooses the least congested path and assigns analytical model is designed under the following assumptions: a wavelength among the available wavelengths over a set of k A call (connection) request of each s-d pair is based on shortest paths. However, LLR may introduce a longer route, a Poisson distribution with arrival rate . The average thus wasting the network resources and resulting in a higher service holding time is exponentially distributed with blocking rate. © mean . The offered load (Erlangs) per node is ¥ © In [13], Hsu et al. propose a weighted-shortest path strategy . (WSP) to select a route. Their objective is to minimize the The mesh network is a set of nodes interconnected by network resource cost and balance the traffic load among each single-fiber links. Each fiber link is bidirectional. link as much as possible. Their analytical model, however, No queuing of connection requests is allowed. If a only considers that all nodes are equipped with a full-range connection can not be made, it is immediately discarded. of wavelength converters. Chu et al. proposed a weighted Each node has the same array of transmitters and re- least-congestion routing and first-fit wavelength assignment ceivers. algorithm (WLCR) [14]. Their algorithm focuses on a route for There is no multicasting. Call request is an end-to-end both the distribution of free wavelengths (F) and the lengths model. of the routes (h) jointly. The weight function is defined as Each fiber link can support each wavelength in either ¥ § © ¤ . Their routes are chosen from a set of routes that direction. have been pre-computed for each s-d pair. Their objective is to Each link is bidirectional, and each link has W wave- carry more traffic while keeping the blocking probability low. length channels. Without using WCs in the networks, their algorithms perform B. Notations better than the shortest path first-fit routing (SP-FF) and fixed- To solve the routing problem, a physical topology can be alternate first-fit routing (FA-FF), but close to LLR algorithm. modeled as a connected graph G(N,L),whereN is the set of In this paper, we study the RWA problem in single- network wavelength routing nodes and L is the set of network fiber circuit switched wavelength routing networks where the single-fiber links. The parameters of the model are functions of same set of wavelengths provided on each link. To our best the nodes, wavelength converters, fiber links and the number knowledge, most proposed adaptive routing algorithms select of wavelengths in a fiber link, where candidate routes from a pre-computed set of alternate paths. is the set of wavelength routing nodes (e.g OXCs or OADMs). Normally, routes are pre-computed by the edge-disjoint k- s denotes a source node. shortest paths for each s-d pair [4]. A route is determined d denotes a destination node. denotes the neighbour nodes of s. by calculating their cost or weight function, which is related denotes the neighbour nodes of d.
Recommended publications
  • Contributions to Network Planning and Operation of Flex-Grid/SDM Optical Core Networks
    Contributions to Network Planning and Operation of Flex-Grid/SDM Optical Core Networks by Rubén Rumipamba-Zambrano A thesis submitted in fulfillment for the degree of Doctor of Philosophy in the Broadband Communications Research Group (CBA) Computer Architecture Department (DAC) February 2019 Contents List of Figures .............................................................................................................................. 7 List of Tables ............................................................................................................................. 11 Abbreviations and Symbols ...................................................................................................... 13 Summary .................................................................................................................................... 19 Resumen ..................................................................................................................................... 21 Resum ......................................................................................................................................... 23 Acknowledgments ..................................................................................................................... 27 1 Introduction ......................................................................................................................... 1 1.1 Motivation ....................................................................................................................
    [Show full text]
  • Provisioning in Multi-Band Optical Networks
    2598 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 9, MAY 2020 Provisioning in Multi-Band Optical Networks Nicola Sambo , Alessio Ferrari , Antonio Napoli , Nelson Costa, João Pedro , Bernd Sommerkorn-Krombholz, Piero Castoldi , and Vittorio Curri (Highly-Scored Paper) Abstract—Multi-band (MB) optical transmission promises to transmission bands beyond C – where SMF can propagate light extend the lifetime of existing optical fibre infrastructures, which in single mode.1 First upgrades to L-band have been carried + usually transmit within the C-band only, with C L-band being out for example in [4]. At the moment, advanced research is also used in a few high-capacity links. In this work, we propose a physical-layer-aware provisioning scheme tailored for MB systems. considering S- [5], [6] and U-band [7] for transmission. Recent This solution utilizes the physical layer information to estimate, improvements on optical components have demonstrated, for by means of the generalized Gaussian noise (GGN) model, the example, wideband amplifiers [8], [9] and transceivers [10] with generalized signal-to-noise ratio (GSNR). The GSNR is evaluated improved optical performance. Moreover, MB transmission is assuming transmission up to the entire low-loss spectrum of optical also supported by the large amount of deployed optical fibers fiber, i.e., from 1260 to 1625 nm. We show that MB transmission may lead to a considerable reduction of the blocking probability, with negligible absorption peak at short wavelengths [11]. despite the increased transmission penalties resulting from using Until now, networking studies — e.g., on lightpath provi- additional optical fiber transmission bands. Transponders support- sioning and routing and spectrum assignment — have focused ing several modulation formats (polarization multiplexing – PM – mainly on C-band systems [12]–[16].
    [Show full text]
  • On the Impact of Optimal Modulation and FEC Overhead on Future
    Preprint, 14/09/2021, 17:49 1 On the Impact of Optimal Modulation and FEC Overhead on Future Optical Networks Alex Alvarado, David J. Ives, Seb Savory and Polina Bayvel Abstract—The potential of optimum selection of modulation paradigm, any route reconfiguration can be accommodated and forward error correction (FEC) overhead (OH) in future through the network. However, this leads to over provisioning transparent nonlinear optical mesh networks is studied from an of resources. information theory perspective. Different network topologies are studied as well as both ideal soft-decision (SD) and hard-decision The increase in traffic demand together with the devel- (HD) FEC based on demap-and-decode (bit-wise) receivers. When opment of software-defined transceivers that can adapt the compared to the de-facto QPSK with 7% OH, our results show transmission parameters to the physical channel have increased large gains in network throughput. When compared to SD-FEC, the interest in designing networks that utilize the resources 12 HD-FEC is shown to cause network throughput losses of %, more efficiently. The degrees of freedom in the transceiver 15%, and 20% for a country, continental, and global network topology, respectively. Furthermore, it is shown that most of include, e.g., the forward error correction (FEC) scheme, FEC the theoretically possible gains can be achieved by using one overhead (OH), modulation format, frequency separation (in modulation format and only two OHs. This is in contrast to the flex-grid networks), launch power, and symbol rate (see [5, infinite number of OHs required in the ideal case. The obtained Fig.
    [Show full text]
  • TRAFFIC GROOMING in WDM NETWORKS Diksha Sharma , Ashish Sachdeva Deptt
    ISSN: 2278 – 909X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 5, Issue 7, July 2016 TRAFFIC GROOMING IN WDM NETWORKS Diksha Sharma , Ashish Sachdeva Deptt. Of Electronics And Communications JMIT, Radaur ABSTRACT Transmission of optical signals, through Fiber optic communication technology has brought a different fiber channels. revolution since 1970s. This technology has rapidly Strengthening of optical signal along longer replaced the copper wires, starting from the core channels using the devices like optical backbone networks then gradually to the metro and now amplifiers and regenerators. finally towards the access networks. WDM networks Routing or switching of optical signals using present concurrency by multiplexing more than one devices like optical or electrical switches and wavelength and transmit them simultaneously within cross-connects. the same fiber. A lightpath is an optical association, Splitting or merging of optical signals using from a source to a destination over a wavelength on multiplexers/de-multiplexers, splitters or each intermediate link. These end to end all-optical couplers. circuits tender bandwidths equivalent to the bandwidth Detecting and receiving of optical signals provided by single wavelength. Such optical networks using Optical line terminals, photo-detectors or are referred to as the wavelength division multiplexing optical receivers, by converting them in networks We have chosen HEGONS (Heterogeneous electrical signals (using transponders) [2]. Grooming Optical Network Simulator) as the tool for network simulations A Heterogeneous Grooming 1.2 Optical fibers: Optical Network Simulator (HEGON Supporting mixed Optical fiber is a communication system in which routing & wavelength assignment algorithms and light is used as a carrier and fiber is used as a optional wavelength conversions capability on each medium.
    [Show full text]
  • Optical Burst Switching (OBS) for DWDM Transmission Medium: an Overview
    ISSN (Print) : 2319-5940 ISSN (Online) : 2278-1021 International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 12, December 2013 Optical Burst Switching (OBS) for DWDM transmission medium: an Overview Ms. Sampada D. Samudra1, Mrs. Shilpa P. Gaikwad2 M.Tech. Student, Dept. of Electronics, College of Engineering, Bharti Vidyapeeth Deemed University, Pune, India1 Professor, Dept. of Electronics, College of Engineering, Bharti Vidyapeeth Deemed University, Pune, India2 Abstract:This paper presents a review on optical burst switching (OBS) for dense wavelength division multiplexing (DWDM) technology. The DWDM technology is explained in brief. Then the three generations of optical networks are briefed. The different switching schemes in optical networks are compared. The advantages and issues related to OBS are reviewed. Lastly the simulator tool nOBS based on ns-2 is overviewed. Keywords: DWDM, OBS, nOBS, optical network. I. INTRODUCTION With the increasing use of multimedia on the internet there SONET/SDH on a single fiber. Hence it is a crucial is an increasing demand for high bandwidth networks. element in optical networks. The following diagram Today’s networks carry high speed data traffic along with represents the no. of channels available on a DWDM voice traffic. The up gradation of existing networks for link.[7] such traffic is very expensive. Optical technology is found The DWDM transmission system is build on an optical to be best to satisfy the growing demands of bandwidth layer which is similar to the other layers of networking. and future network services. Optical fibers can support The transmission system and the optical nodes together bandwidth up to 50 THz.
    [Show full text]
  • EFFICIENT DISCRETE RATE ASSIGNMENT and POWER OPTIMIZATION in OPTICAL COMMUNICATION SYSTEMS 4427 Is No Lower Than at Lower Rates
    JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 35, NO. 20, OCTOBER 15, 2017 4425 Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model Ian Roberts, Student Member, OSA, and Joseph M. Kahn, Fellow, IEEE Abstract—Computationally efficient heuristics for solving the modem rate leads to increased complexity upstream and down- discrete-rate capacity optimization problem for optical fiber stream from the modem. Flex Ethernet [4] provides technologies communication systems are investigated. In the Gaussian noise to deliver varying data rates. In this paper, we examine the prob- nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes lem of optimizing with 10, 25, 50, and 100 Gb/s rate steps, the number of calls required to solve the computationally intensive assuming a symbol rate of 50 Gbaud. problem of determining the feasibility of proposed discrete rate In wireline or wireless multi-carrier systems, the imposition allocations. In a live system, optimization using this algorithm of a transmitter output power cap on a frequency-dependent minimizes the number of potential discrete rate allocations channel leads to a bit rate allocation problem. For linear chan- tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with nels, this problem is solved efficiently via the Levin-Campello 50 Gb/s rate steps, the mean lost capacity per modem is reduced algorithm [5]. An important difference between the wireline from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate or wireless problem and the WDM optical communication optimization.
    [Show full text]
  • Multiservice Optical Switching System Coredirector FS
    Multiservice Optical Switching System CoreDirector FS Offering new services and enhancing service velocity Transform your network into a programmable set of network resources, fundamentally changing the way you compete. Network operators are faced with everincreasing and uncertain traffic demands driven by new bandwidth intensive applications, while revenue streams erode as the price per bit continues to fall. Networks have become mission- For example, “I need a 600 Mb/s critical tools as business, Ethernet connection with protection level 1 from A-to-Z government, industry, and for the next three days” O S Z consumers demand newer, faster, S and more flexible services. It is imperative that network operators Customer Location create transparent, flexible, A rapidly-provisioned, on-demand networks to meet end-user needs. Customer C To handle these new network Location demands profitably, network FlexiPort OC-3/STM-1 operators require the automation OC-12/STM-4 OC-48/STM-16 of key functions of the network. 10/100/GbE Ethernet (L1) 10/100/GbE Ethernet (L2) A programmable set of network FC/FICON/ESCON ASI/SDI/HD-SDI resources can automatically OTU-1 activate any type of service Figure 1. CoreDirector FS with Ciena’s optical platforms for a service-driven network between any set of endpoints with the most velocity and efficiency. It provides a low-touch ability to dynamically allocate, CoreDirector FS provides hardware flexibility by increase, and/or decrease network capacity in response consolidating the functionality of multiples of MSPPs, DCSs, to unpredictable demand curves. Ethernet, and Optical Transport Network (OTN) switches into a single, high-capacity intelligent switching system.
    [Show full text]
  • Fault Recovery in Carrier Ethernet, Optical and GMPLS Networks
    Journal of Communication and Computer 11 (2014) 508-523 doi: 10.17265/1548-7709/2014.06.005 D DAVID PUBLISHING Fault Recovery in Carrier Ethernet, Optical and GMPLS Networks George Tsirakakis Department of Computer Science, University of Crete, Heraklio, Greece Abstract: The trend in the current multiple technology network environment is to reduce the number of network technology layers and form a dual layer, packet over circuit architecture. Carrier Ethernet (for the packet layer), optical networks (for the circuit layer) and GMPLS, are dominant enablers in this scenario. Survivability and robustness will be of critical role for the accomplishment of a transport class of network. This paper describes the fault recovery functionalities in optical, Carrier Ethernet and GMPLS networks, considering the role of GMPLS in each scenario. We overview the currently standardized schemes and published research, evaluate different cases and comment on unresolved issues and required extensions. Key words: Fault restoration, carrier ethernet, PBB, WDM, GMPLS. 1. Introduction Section 4 presents the existing fault recovery extensions in MPLS/GMPLS and its OAM standards. Future networks are going to provide connections Multilayer fault recovery benefits, enabling of high bandwidth and for this reason, survivability technologies and research done are explained in will be a standard requirement. Survivability has been Section 5. studied for many years on different technologies. Optical network survivability is discussed in 2. Optical Network Survivability
    [Show full text]
  • A Review of Fault Management in WDM Mesh Networks: Basic Concepts and Research Challenges
    A Review of Fault Management in WDM Mesh Networks: Basic Concepts and Research Challenges Jing Zhang and Biswanath Mukherjee, University of California Abstract This article first presents a broad overview of the fault management mechanisms involved in deploying a survivable optical mesh network, employing optical cross- connects. We review various protection and restoration schemes, primary and back- up route computation methods, sharability optimization, and dynamic restoration. Then we describe different parameters that can measure the quality of service pro- vided by a WDM mesh network to upper protocol layers (e.g., IP network back- bones, ATM network backbones, leased lines, virtual private networks), such as service availability, service reliability, restoration time, and service restorability. We review these concepts, the factors that affect them, and how to improve them. In par- ticular, we present a framework for cost-effective availability-aware connection provi- sioning to provide differentiated services in WDM mesh networks. Through the framework, the more realistic scenario of multiple near-simultaneous failures can be handled. In addition, the emerging problem of protecting low-speed connections of different bandwidth granularities is also reviewed. ith the maturing of wavelength-division multi- 109 hours, Tx denotes optical transmitters, Rx denotes optical plexing (WDM) technology, one single strand receivers, and MTTR means mean time to repair. of fiber can provide tremendous bandwidth With the frequent occurrence of fiber cuts and the tremen- (potentially a few tens of terabits per second) dous traffic loss a failure may cause, network survivability WWby multiplexing many nonoverlapping wavelength channels becomes a critical concern in network design and real-time (WDM channels).
    [Show full text]
  • Flexible Architectures for Optical Transport Nodes and Networks and ROADM Design for Mesh Optical Networks with Colorless and Directionless Specification
    International Journal of Electronics Communication and Computer Engineering Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209 Flexible Architectures for Optical Transport Nodes and Networks and ROADM Design for Mesh Optical Networks with Colorless and Directionless Specification Ali Zarei Mahmood Abadi Abolfazl Chaman Motlagh Ehsan Ghonji Electronic M.Sc. Graduate, Assistance Professor, Faculty of Electrical Electronic M.Sc. Graduate, Azad University, Tehran, Iran and Computer, IHU, Tehran, Iran Azad University, Tehran, Iran Abstract – The network today are equipped regarding wavelength routing and reduce OEO operations colorless flexibility and scalability using colorless and directionless and the directionless architecture of ROADM and this causes handling Architecture provides these conditions. In this paper two unpredictable demand in high bandwidth, and also supplies kinds of implementing colorless and directionless one to one connection and provides new services without architecture based on PXC and WSS are explained. disrupting the desired routes. In this article, using PXC and WSS at a multi-degree node, we detect C & D ROADM Colorless and directionless ROADM architecture based architectures and then examine both architectures based on on PXC using three-dimensional MEMS based on PXC or their advantages. We will also discuss some of their ROADM based on selective wavelength switches of problems. Then a kind of colorless, directionless and device, WSS devices are identified by combination of inimitable (CD & C) architecture is proposed that combines splitter / combiner with multiple ports [1]. Advantages of properties of the C & D architectures; and considered both architectures and the problems are discussed. architecture is implemented practically. In addition, a type of colorless, directionless Flexibility in support of network topologies, dynamic architectural is proposed that can combine ROADMs capacity allocation automated network control, and making based on PXC and WSS.
    [Show full text]
  • Of the ISSN 1948-3031 Industry ISSN 1948-3031 Submarine Telecoms Forum Is Published Bimonthly by WFN Strategies
    57 M a y Voice 2011 of the ISSN 1948-3031 Industry ISSN 1948-3031 Submarine Telecoms Forum is published bimonthly by WFN Strategies. The publication may not be reproduced or transmitted in any form, in whole or in part, had a glass of wine the other day domestic and international RSS feeds, without the permission of the publishers. at Covent Garden with a business facebook profile and requisite 300 daily Submarine Telecoms Forum is an customer and friend. emails. One more platform may put me independent com mercial publication, I in overload! serving as a freely accessible forum for He had recently procured an Apple professionals in industries connected with submarine optical fibre technologies and iPhone, and was telling me about all the But I sure am happy the boys in the techniques. neat things he could now do on the fly; my backroom got that one covered. And Liability: while every care is taken in Android seemed to pale in comparison. maybe the next time someone mentions preparation of this publication, the Twitter or some other cool medium I'll look publishers cannot be held responsible for He then mentioned how, at the behest of the accuracy of the information herein, or a little more composed and sure-footed. any errors which may occur in advertising one of his children, he had added Twitter or editorial content, or any consequence to his applications, but had spent a fair arising from any errors or omissions. amount of time trying to find areas of The publisher cannot be held responsible real interest.
    [Show full text]
  • Reference Architecture for Multi-Layer Software Defined Optical Data Center Networks
    Electronics 2015, 4, 633-650; doi:10.3390/electronics4030633 OPEN ACCESS electronics ISSN 2079-9292 www.mdpi.com/journal/electronics Article Reference Architecture for Multi-Layer Software Defined Optical Data Center Networks Casimer DeCusatis School of Computer Science and Mathematics, New York State Cloud Computing and Analytics Center, Marist College, Poughkeepsie, NY 12601, USA; E-Mail: [email protected]; Tel.: +1-845-575-3883; Fax: +1-845-575-3605. Academic Editor: Lei Liu Received: 24 July 2015 / Accepted: 8 September 2015 / Published: 18 September 2015 Abstract: As cloud computing data centers grow larger and networking devices proliferate; many complex issues arise in the network management architecture. We propose a framework for multi-layer; multi-vendor optical network management using open standards-based software defined networking (SDN). Experimental results are demonstrated in a test bed consisting of three data centers interconnected by a 125 km metropolitan area network; running OpenStack with KVM and VMW are components. Use cases include inter-data center connectivity via a packet-optical metropolitan area network; intra-data center connectivity using an optical mesh network; and SDN coordination of networking equipment within and between multiple data centers. We create and demonstrate original software to implement virtual network slicing and affinity policy-as-a-service offerings. Enhancements to synchronous storage backup; cloud exchanges; and Fibre Channel over Ethernet topologies are also discussed. Keywords: cloud; software defined network; network function virtualization; Fibre Channel over Ethernet; optical 1. Introduction Traditional information technology (IT) infrastructures manage servers, storage, and networking as homogeneous silos, with extensive manual intervention by highly skilled system administrators.
    [Show full text]