Resource Inventory: a Tool for Cave Science, Management, and Restoration Harvey R

Total Page:16

File Type:pdf, Size:1020Kb

Resource Inventory: a Tool for Cave Science, Management, and Restoration Harvey R Part 2-Conservation, Management, Ethics: DuChene-Resource Inventory 19 Section A-Identifying and Protecting Cave Resources Resource Inventory: A Tool for Cave Science, Management, and Restoration Harvey R. DuChene The exploration and study of caves has steadily increased in popularity over the last 50 years. This interest is shown by growth in the membership of the National Speleological Society and similar organizations around the To manage caves world. The growing number of cavers results in increased pressure on known caves. Damage to fragile resources is an almost inevitable conse- effectively, their quence of visitation. It is now recognized that we must take care or caves extent, contents, and find new ways to conserve, protect, study, and enjoy them. and significance In 1988, Congress enacted the Federal Cave Resources Protection Act. must be assessed. (See Appendix I, page 507, for the complete text of the Act. AIso see cave laws, page 220.) This Act mandates the identification of significant caves on federal lands and prohibits: ... the willful disturbance, altering. remuval, sale, receipt, and possession of ... cave resources obtained illegally on Federal lands. The Federal Cave Resources Protection Act of 1988 instmcts that signifi- cant caves are to be considered in the preparation or implementation of any land-management plan. Through this Act, federal agencies, including the Bureau of Land Management, US Fish and Wildlife Service, USDA Forest Service, National Park Service, and US Geological Survey, are mandated to manage and protect caves. To manage caves effectively, their extent, contents, and significance must be assessed. This evaluation requires the methodical gathering, sorting, and interpreting of cave data. The first cave inventory projects led to develop- ment of methods for acquiring this information. Inventory projects are active on both private and federal lands. Many Cave inventory is caves managed by the Bureau of Land Management, the National Park the systematic Service, or the USDA Forest Service, as well as independent cave projects or conservancies, have active inventory programs. The information observation and presented in this chapter is based on the LechuguiIIa Cave Mineral Inven- recording of tory, a project that has been collecting and analyzing geological data in significant features Carlsbad Caverns National Park since 1990. found within a cave. What Is Cave Inventory? Cave inventory is the systematic observation and recording of significant features found within a cave. An inventory may include many types of data on the archaeology, biology, chemistry, hydrology, geology, history, mineralogy, paleontology, speleogenesis, and impacts of modern human use. The amount and type of information collected depends on several factors: the purpose of the project; the nature and complexity of the cave; and technical, financial, personnel, and temporal limitations. 20 Cave Conservation and Restoration Cave inventory is not a new concept. Scientists have been cataloging biota, archaeological sites, and fossil deposits in caves since at least the 17005. These systematic studies are essential for understanding processes, geological history, and biological communities in caves. Since the adoption of the Federal Cave Resources Protection Act of 1988, inventories have expanded to include the cataloging of all significant attributes in a cave. Cave mapping is a popular, systematic method for collecting data from caves. Early cave maps were simple, commonly showing passage walls but little or no internal detail. Over time, cave maps have evolved to Cave inventory is include other information such as streams, breakdown, formations, bedrock not a new concept. geology, and other characteristics deemed significant by the survey crew Scientists have been and cartographer. The amount of detail included on a map often depends on the observational skills, drawing ability, and patience of the survey cataloging biota, sketcher. archaeological sites, The term cave survey usually refers to linear and angular measurements and fossil deposits made inside of cave passages. This mathematical data is used to describe in caves since at the location, fonn, and extent of a cave. Typically, a cave survey is used to least the 1700s. make a map of a cave. A cave resource inventOlY lists the contents of a cave. Cave cartography-making maps of caves-has become an art form with cartographers striving to include as much inventory information as possible while making maps that are faithful depictions of the cave. Why Do Inventory? Information is the key to appreciating and understanding caves and their contents-understanding cave systems is the key to managing and protect- ing resources. The amount of detail and specific type of information required depends on the reasons for conducting an inventory. For some projects, a reconnaissance inventory is adequate. Inventory for scientific studies, restoration projects, and management oflarge systems requires more detailed data collection. The depth and breadth of knowledge about various aspects of the cave environment varies widely among map sketchers. Thus, the data included on maps, especially of large and complex systems, is inherently inconsis- tent. This is particularly true where many sketchers are responsible for mapping a large cave. The cave inventory process utilizes checklists that help survey teams and sketchers gather consistent information. These lists itemize the features found in the cave and provide a mechanism for documenting attributes that arc rare or significant. The objectives for a cave inventory project should be well defined to determine the type of information and the amount of detail to be included. Most cave inventories do not require specialists in geology, biology, or other sciences, but they do require a basic understanding of the features likely to be encountered in a cave. Some inventories of a highly technical or scientific nature may require active involvement of specialists. Inventories as Tools The following examples describe how cavers, managers, and scientists use inventories as tools for project design. Cave Scicncc. Basic cave inventories are used by scientists and other researchers to locate areas tor study. Once inventory data is stored in a database, information can be accessed quickly. The use of inventory data can lessen human impact on caves. By providing a reference to recorded information, researchers may not need to enter the cave to learn about the resources. For example, a researcher interested in water sampling can use Part 2-Conservation, Management, Ethics: DuChene-Resource Inventory 21 inventory data to locate cave pools. Without a good cave inventory, the researcher would probably have to visit multiple sites to determine if any were suitable for study. I\lanagement. Cave inventories provide infonnation for making educated management decisions about cave resources. When making choices about access through cave passages, cave managers can use inventory databases to locate sensitive archaeological or biological resources (for example, historical artifacts, bat roosts, aquatic troglobites, or habitat for threatened species). Managers can use inventory data to protect important resources by The objectives for designating travel routes or surface activities that mitigate negative impact. a cave inventory project should be Restoration. Cave inventories can pinpoint infonnation on areas or well defined to passages that have been negatively impacted and need restoration. Using determine the type inventory data, managers can locate these areas quickly and can also compare the potential impacts of proposed restoration tasks to the potential of information and benefits of restoration. the amount of detail For example, restoration is proposed for an area that was muddied by to be included. traffic and then closed to visitation. Cave managers can use inventory data to help evaluate the sensitivity or fragility of the area. The data can provide information for detennining the size of restoration teams-perhaps only two or three skilled individuals should take on the task or the job may require caver groups working in multi-day shifts. Or it might be decided the damaged area should be left as it is and no restoration effort should be initiated. Databases can also be used to identify multiple restoration objectives that can be accomplished by one team to maximize productivity and minimize additional human impact. Resources for Inventory Many information sources exist that can help project managers design inventory programs. Primary sources include published literature specific to the topic or area covered by the inventory. (See Appendix 2, listings of resources and agencies for archaeological, biological, geological, and speleological information, page 515.) Information may also be gathered from local experts, libraries, colleges, universities, and from local, state, and federal government agencies. Information on scientific aspects of a specific cave or cave region may be available within the caving community. Members of the National Speleo- logical Society (NSS) have foroled special interest groups within the Society called Sections. Members of the various NSS Sections (geology/ geography, history, biology, paleontology, conservation/management and others) can provide helpful information for the design of inventory projects. Other information sources include the National Speleological Society Library, Cave Research Foundation, American Cave
Recommended publications
  • Nancy Hultgren Remembers.Pdf
    PART III: Carlsbad Caverns National Park, New Mexico The “main focus” of our five-day trip, in the early spring of 1952, was extended time to visit two locations—Carlsbad Caverns National Park, in the southeastern part of the State of New Mexico, and Ciudad Juarez, Mexico—across the International Border from El Paso, Texas, which lies in the far western tip of Texas. A beautiful morning awaited as we rose from our beds in the small motel in the town of Carlsbad, New Mexico. Out in the parking lot, in front of our room, the Hudson was covered with a thick layer of dust, accumulated during our long drive through Colorado and New Mexico. No rain in sight to help wash the car off, but my dad pulled into a Texaco Gas Station in town to refuel, and have the attendant check the oil and clean the windshields and side windows for us. (While living in Denver, Colorado, my dad often frequented a favorite Texaco Station on Colorado Blvd., not far from our first house on Birch Street.) In a friendly tone, and looking at our license plates, which read “Colorful Colorado,” the station attendant asked, “How far have you folks come? Headed for the Caverns I bet! Any time of year is a good time to go, ya’ know! Doesn’t matter what the temperature is on the outside today, cause deep in the Caverns the temperature is the same year round—56°.” Motel Stevens in Carlsbad, New Mexico. Curt Teich vintage linen postcard. Leaving Carlsbad and the Pecos River Valley behind, my dad pointed the Hudson southwest out of town on US Hwy.
    [Show full text]
  • 2015 Visitor Guide Park Information and Maps
    National Park Service Wind Cave National Park U.S. Department of the Interior The official newspaper Annual 2015 Visitor Guide Park Information and Maps The Best of Both Worlds What Lies Below? From Tipis to Tours Back From the Brink Wind Cave National Park is host to Wind Cave is considered sacred and Many national parks are great places one of the longest and most complex culturally significant to many American to view wildlife. However, that has caves in the world. Currently over 143 Indians, and throughout the centuries, not always been the case. In the early miles of twisting passageways reside many tribes lived and traveled within 1900s, many animal populations neared under only 1.2 square miles of surface what would become Wind Cave extinction because of loss of habitat or area, creating a maze of tunnels deep National Park. Who first discovered hunting pressures. below the park's rolling hills. The cave Wind Cave is lost to time, but in 1881, is famous for a rare formation known Tom and Jesse Bingham rediscovered as boxwork. More boxwork is found in the cave when they were attracted Welcome to Wind Cave than all other caves in the to the entrance by whistling noises Wind Cave National Park! world combined. coming out of the cave. This national park is one of the oldest in Portions of Wind Cave are believed to In 1889, the South Dakota Mining the country. Established in 1903, it was the be over 300 million years old, making Company established a mining eighth national park created and the first set it one of the oldest known caves in the claim at Wind Cave and hired J.D.
    [Show full text]
  • Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico)
    Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico) by Stephen Alexander Daire A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2019 Copyright © 2019 by Stephen Daire “History is just a 25,000-year dash from the trees to the starship; and while it’s going on its wild and woolly but it’s only like that, and then you’re in the starship.” – Terence McKenna. Table of Contents List of Figures ................................................................................................................................ iv List of Tables ................................................................................................................................. xi Acknowledgements ....................................................................................................................... xii List of Abbreviations ................................................................................................................... xiii Abstract ........................................................................................................................................ xvi Chapter 1 Planetary Sciences, Cave Survey, & Human Evolution................................................. 1 1.1. Topic & Area of Interest: Exploration & Survey ....................................................................12
    [Show full text]
  • Hypogenic Origin of Robber Baron Cave: Implications on the Evolution and Management of the Edwards Aquifer, Central Texas, Usa
    Warning concerning copyright restrictions The copyright law of the United States (Title 17, United States Code) governs· the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of Copyright Law. LINDA HALL LIBRARY Illllll 111111111111111111111111111111111 5109 CHERRY STREET KANSAS CITY, MISSOURI 64110-2498 PHONE (816) 363-4600 1/24/12DocServ #: 661910 j FAX: (816) 926-8785 13:15 SHIP TO: Shelved as: G-S c,,D\.-A)- A'* taO' 7 ILL I T AMU Libraries Location: Texas A and MU.*** 5000 TAMUS Title: National Cave and Karst Symposium 1 ; Advances in Hypogene Karst Studies I College Station, TX 77843-5000 Odyssey Preferred Volume: Issue: TXA Patron: Bandel, Micaela Date: 2009 Odyssey: 165.91.74.104 Phone: (979)845-5641 Article/Paper: ; Hypogenic origin of robber Ariel: 128.194.84.50 baron cave; implications on the evolution and ~~nt of the edwards aquifer, central Regular Ariel OCLC #: 437009571 LHL SN: / CCG Max Cost: $50IFM Lender string:
    [Show full text]
  • Survey Solutions for 3D Acquisition and Representation of Artificial And
    applied sciences Article Survey Solutions for 3D Acquisition and Representation of Artificial and Natural Caves Daniele Giordan 1 , Danilo Godone 1,* , Marco Baldo 1, Marco Piras 2 , Nives Grasso 2 and Raffaella Zerbetto 3 1 Italian National Research Council, Research Institute for Geo-Hydrological Protection (CNR-IRPI), Strada delle Cacce 73, 10135 Torino, Italy; [email protected] (D.G.); [email protected] (M.B.) 2 Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy; [email protected] (M.P.); [email protected] (N.G.) 3 Speleo Club Tanaro, Via Carrara, 12075 Garessio, Italy; [email protected] * Correspondence: [email protected] Abstract: A three-dimensional survey of natural caves is often a difficult task due to the roughness of the investigated area and the problems of accessibility. Traditional adopted techniques allow a simplified acquisition of the topography of caves characterized by an oversimplification of the geometry. Nowadays, the advent of LiDAR and Structure from Motion applications eased three- dimensional surveys in different environments. In this paper, we present a comparison between other three-dimensional survey systems, namely a Terrestrial Laser Scanner, a SLAM-based portable instrument, and a commercial photo camera, to test their possible deployment in natural caves survey. We presented a comparative test carried out in a tunnel stretch to calibrate the instrumentation on a benchmark site. The choice of the site is motivated by its regular geometry and easy accessibility. According to the result obtained in the calibration site, we presented a methodology, based on the Citation: Giordan, D.; Godone, D.; Structure from Motion approach that resulted in the best compromise among accuracy, feasibility, Baldo, M.; Piras, M.; Grasso, N.; and cost-effectiveness, that could be adopted for the three-dimensional survey of complex natural Zerbetto, R.
    [Show full text]
  • Cave & Karst Resource Management Plan, Wind Cave National Park
    Cave & Karst Resource Management Plan, Wind Cave National Park 2007 Cave and Karst Resource Management Plan, Wind Cave National Park CAVE AND KARST RESOURCE MANAGEMENT PLAN WIND CAVE NATIONAL PARK March 2007 Recommended By: ___________________________________________________________________ Physical Science Specialist, Date: Wind Cave National Park Concurred By: ___________________________________________________________________ Chief of Resource Management, Date: Wind Cave National Park Approved By: ___________________________________________________________________ Superintendent, Wind Cave National Park Date: 2 Cave & Karst Resource Management Plan, Wind Cave National Park 2007 Cave and Karst Resource Management Plan, Wind Cave National Park Table of Contents I. BACKGROUND....................................................................................................................................................... 4 A. PARK PURPOSE ................................................................................................................................................... 4 B. GEOGRAPHIC LOCATION & DESCRIPTION OF THE PARK ..................................................................................... 4 C. PARK SIGNIFICANCE ............................................................................................................................................ 4 D. SURFACE LAND MANAGEMENT RELATIONSHIP TO KARST............................................................................... 10 II. CAVE AND KARST RESOURCE
    [Show full text]
  • Caves and Karst
    CAVES AND KARST An educational curriculum guide on cave and karst resources. 2 week unit Prepared by the National Park Service and their partners at the University of Colorado at Denver. NPS Photo by Rick Wood Page 1 of 120 Table of Contents 1. Foreword Page 3 2. National Standards Page 5 3. Caves and Karst Activity Objectives Page 10 4. Caves and Karst Activities and Lesson Plans Day 1: Interactive Reading Guide Page 14 Reading Guide - Teacher Version Reading Guide - Student Version Day 2: Making a Cave Page 35 Making a Cave - Teacher Version Making a Cave - Student Version Day 3 and 4: Growing Speleothems Page 46 Growing Speleothems - Teacher Version Growing Speleothems - Student Version Day 5: Speleothems: A Webquest Page 62 Speleothems Webquest - Teacher Version Speleothems Webquest - Student Version Day 6: Cave Life: A Jigsaw Activity Page 77 Cave Life - Teacher Version Cave Life - Activity Fact Cards Cave Life - Student Version Day 7, 8, and 9: Present a Cave Page 92 Present a Cave - Teacher Version Present a Cave - Activity Fact Cards: 8 NPS Caves Present a Cave - Student Worksheet Present a Cave - Peer Evaluation Form Present a Cave - Group Member Evaluation Form Day 10: Cave Quiz Game Page 110 (Access game via Views DVD or website) Cave Quiz Game - Teacher Version Page 116 NPS Photo by Rick Wood 5. Glossary of Terms Foreword “Views of the National Parks” (Views) is a multimedia education program that presents stories of the natural, historical, and cultural wonders associated with America’s parks. Through the use of images, videos, sounds and text, Views allows the public to explore the national parks for formal and informal educational purposes.
    [Show full text]
  • A Multi-Method Approach for Speleogenetic Research on Alpine Karst Caves
    GEOMOR-05115; No of Pages 20 Geomorphology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain) Daniel Ballesteros a,⁎, Montserrat Jiménez-Sánchez a, Santiago Giralt b, Joaquín García-Sansegundo a, Mónica Meléndez-Asensio c a Department of Geology, University of Oviedo, c/Jesús Arias de Velasco s/n, 33005, Spain b Institute of Earth Sciences Jaume Almera (ICTJA, CSIC), c/Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain c Geological Survey of Spain (IGME), c/Matemático Pedrayes 25, 33005 Oviedo, Spain article info abstract Article history: Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations Received 30 January 2014 require techniques from different geoscience disciplines that must be adapted to the methodological constraints Received in revised form 23 February 2015 of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including Accepted 24 February 2015 14% of the World's Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being Available online xxxx developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research Keywords: Cave level in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, 234 230 Karst massif dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating ( U/ Th) and Shaft geomorphological, structural and stratigraphical studies of the cave surroundings.
    [Show full text]
  • Draft 8380, Cave and Karst Resources Handbook
    BLM Manuals are available online at web.blm.gov/internal/wo-500/directives/dir-hdbk/hdbk-dir.html Suggested citation: Bureau of Land Management. 2015. Cave and Karst Resources Management. BLM Manual H-8380-1. *Denver, Colorado. ## Sheet H - 8380 CAVE AND KARST RESOURCES MANAGEMENT HANDBOOK Table of Contents Chapter 1: Introduction ....................................................................................................................... iii I. Handbook Summary ........................................................................................................................................................... 1 Chapter 1: Introduction ...................................................................................................................................................... 1 Chapter 2: Significant Cave Identification and Designation ........................................................................................ 1 Chapter 3: Resource Planning ........................................................................................................................................... 1 Chapter 4: Integrating Surface and Subsurface Resources ........................................................................................... 1 Chapter 5: Implementation Strategies .............................................................................................................................. 1 II. Purpose and Need for Cave/Karst Resources Management .....................................................................................
    [Show full text]
  • May 2014 Central Indiana Grotto Page 63 Volume 58 Number 5 May 2014
    Volume 58 Number 5 May 2014 May 2014 Central Indiana Grotto Page 63 The CIG Newsletter is published monthly by the Central Indiana Grotto of the National Speleological Society. Permission is granted to all internal organizations of the NSS and the Speleo Digest to reprint material in this newsletter with proper credit to the author and the CIG Newsletter. Copyright©2014—CENTRAL INDIANA GROTTO, Inc, PO Box 153, Indianapolis, IN 46206-0153. Annual Dues: Regular and Associate members $15.00, Family members $7.50. Annual Subscriptions: Free to CIG members; otherwise $10.00 per year, prorated to expire with the December issue. Subscription applications and checks should be sent to the grotto post office box or pay online at our Web site: cigcaves.com. Editorial Correspondence: Articles, suggestions, and address changes should be sent to the editor. The editor reserves the right to choose the order of publication of submitted articles. There is no guarantee that a particular newsletter will not be filled before the deadline. Exchanges: Exchange newsletters and all other grotto correspondence should be sent to the grotto post office box listed above. Ex- change editors may request digital copies of text and illustrations. Signed articles do not necessarily express the opinion of the National Speleological Society, the Central Indiana Grotto, or the editor. Unsigned material may be attributed to the editor. The deadline for the CIG Newsletter will be Wednesday, 3 weeks before the meeting. Grotto Officers Chairman— Dean Wiseman Treasurer—Rich Lunseth
    [Show full text]
  • Karst Features in the Black Hills, Wyoming and South Dakota- Prepared for the Karst Interest Group Workshop, September 2005
    193 INTRODUCTION TO THREE FIELD TRIP GUIDES: Karst Features in the Black Hills, Wyoming and South Dakota- Prepared for the Karst Interest Group Workshop, September 2005 By Jack B. Epstein1 and Larry D. Putnam2 1U.S. Geological Survey, National Center, MS 926A, Reston, VA 20192 2Hydrologist, U.S. Geological Survey, 1608 Mountain View Road, Rapid City, SD 57702. This years Karst Interest Group (KIG) field trips will demonstrate the varieties of karst to be seen in the semi-arid Black Hills of South Dakota and Wyoming, and will offer comparisons to karst seen in the two previous KIG trips in Florida (Tihansky and Knochenmus, 2001) and Virginia (Orndorff and Harlow, 2002) in the more humid eastern United States. The Black Hills comprise an irregularly shaped uplift, elongated in a northwest direction, and about 130 miles long and 60 miles wide (figure 1). Erosion, following tectonic uplift in the late Cretaceous, has exposed a core of Precambrian metamorphic and igneous rocks which are in turn rimmed by a series of sed- iments of Paleozoic and Mesozoic age which generally dip away from the center of the uplift. The homocli- nal dips are locally interrupted by monoclines, structural terraces, low-amplitude folds, faults, and igneous intrusions. These rocks are overlapped by Tertiary and Quaternary sediments and have been intruded by scattered Tertiary igneous rocks. The depositional environments of the Paleozoic and Mesozoic sedimen- tary rocks ranged from shallow marine to near shore-terrestrial. Study of the various sandstones, shales, siltstones, dolomites and limestones indicate that these rocks were deposited in shallow marine environ- ments, tidal flats, sand dunes, carbonate platforms, and by rivers.
    [Show full text]
  • The Caves & Karst Edition
    A Tale of Two Caves: How Is Hurricane Crawl Cave Different From Crystal Cave? Photo courtesy of Dave Bunnell, Under Earth Images. Meet the Scientists Joel D. Despain, Hydrologist: My favorite scientific experiences involve understanding the geomorphic history of a given cave or cave area. Some geomorphic questions are, “Why did the cave form, and why did it form with these particular shapes and patterns? Is it random?” It turns out that caves form in specific ways that tell us about past conditions. The history of the cave, the structure of the rock, the hydrology of the region, the gradient, and other factors all play big roles. Cave geologists are determining different types of caves and how they develop with greater precision every year. They do this through a better understanding of the shapes, forms, and patterns found within caves. This research is creating a much better understanding of caves that then informs our understanding and knowledge of regional geology and geologic history. Benjamin W. Tobin, Hydrologist: Each science experience is amazing, interesting, and fun in its own way. If I had to choose, however, my favorite would be conducting dye traces at the Grand Canyon. This work involves dumping a colored non-harmful dye into the ground up on the plateau above the canyon, then monitoring springs in the canyon to determine where the dye showed up. This is simple science. But the results tell us an incredible amount about how water moves below our feet and it never seems to do what we expect. Greg M. Stock, Geologist: My favorite science experience was mapping caves in Sequoia with Mr.
    [Show full text]