Stellar Equilibrium Vs. Gravitational Collapse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Planck Satellite and the Cosmic Microwave Background
The Cosmic Microwave Background, Dark Matter and Dark Energy Anthony Lasenby, Astrophysics Group, Cavendish Laboratory and Kavli Institute for Cosmology, Cambridge Overview The Cosmic Microwave Background — exciting new results from the Planck Satellite Context of the CMB =) addressing key questions about the Big Bang and the Universe, including Dark Matter and Dark Energy Planck Satellite and planning for its observations have been a long time in preparation — first meetings in 1993! UK has been intimately involved Two instruments — the LFI (Low — e.g. Cambridge is the Frequency Instrument) and the HFI scientific data processing (High Frequency Instrument) centre for the HFI — RAL provided the 4K Cooler The Cosmic Microwave Background (CMB) So what is the CMB? Anywhere in empty space at the moment there is radiation present corresponding to what a blackbody would emit at a temperature of ∼ 2:74 K (‘Blackbody’ being a perfect emitter/absorber — furnace with a small opening is a good example - needs perfect thermodynamic equilibrium) CMB spectrum is incredibly accurately black body — best known in nature! COBE result on this showed CMB better than its own reference b.b. within about 9 minutes of data! Universe History Radiation was emitted in the early universe (hot, dense conditions) Hot means matter was ionised Therefore photons scattered frequently off the free electrons As universe expands it cools — eventually not enough energy to keep the protons and electrons apart — they History of the Universe: superluminal inflation, particle plasma, -
A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974)
Swiss American Historical Society Review Volume 42 Number 1 Article 2 2-2006 A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974) John Charles Mannone Follow this and additional works at: https://scholarsarchive.byu.edu/sahs_review Part of the European History Commons, and the European Languages and Societies Commons Recommended Citation Mannone, John Charles (2006) "A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974)," Swiss American Historical Society Review: Vol. 42 : No. 1 , Article 2. Available at: https://scholarsarchive.byu.edu/sahs_review/vol42/iss1/2 This Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Swiss American Historical Society Review by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Mannone: A Propensity for Genius A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974) by John Charles Mannone Preface It is difficult to write just a few words about a man who was so great. It is even more difficult to try to capture the nuances of his character, including his propensity for genius as well as his eccentric behavior edging the abrasive as much as the funny, the scope of his contributions, the size of his heart, and the impact on society that the distinguished physicist, Fritz Zwicky (1898- 1974), has made. So I am not going to try to serve that injustice, rather I will construct a collage, which are cameos of his life and accomplishments. In this way, you, the reader, will hopefully be left with a sense of his greatness and a desire to learn more about him. -
Review Study on “The Black Hole”
IJIRST –International Journal for Innovative Research in Science & Technology| Volume 2 | Issue 10 | March 2016 ISSN (online): 2349-6010 Review Study on “The Black Hole” Syed G. Ibrahim Department of Engineering Physics (Nanostructured Thin Film Materials Laboratory) Prof. Ram Meghe College of Engineering and Management, Badnera 444701, Maharashtra, India Abstract As a star grows old, swells, then collapses on itself, often you will hear the word “black hole” thrown around. The black hole is a gravitationally collapsed mass, from which no light, matter, or signal of any kind can escape. These exotic objects have captured our imagination ever since they were predicted by Einstein's Theory of General Relativity in 1915. So what exactly is a black hole? A black hole is what remains when a massive star dies. Not every star will become a black hole, only a select few with extremely large masses. In order to have the ability to become a black hole, a star will have to have about 20 times the mass of our Sun. No known process currently active in the universe can form black holes of less than stellar mass. This is because all present black hole formation is through gravitational collapse, and the smallest mass which can collapse to form a black hole produces a hole approximately 1.5-3.0 times the mass of the sun .Smaller masses collapse to form white dwarf stars or neutron stars. Keywords: Escape Velocity, Horizon, Schwarzschild Radius, Black Hole _______________________________________________________________________________________________________ I. INTRODUCTION Soon after Albert Einstein formulated theory of relativity, it was realized that his equations have solutions in closed form. -