Graphs on Manycores Lecture 23
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
インテル® Parallel Studio XE 2020 リリースノート
インテル® Parallel Studio XE 2020 2019 年 12 月 5 日 内容 1 概要 ..................................................................................................................................................... 2 2 製品の内容 ........................................................................................................................................ 3 2.1 インテルが提供するデバッグ・ソリューションの追加情報 ..................................................... 5 2.2 Microsoft* Visual Studio* Shell の提供終了 ........................................................................ 5 2.3 インテル® Software Manager .................................................................................................... 5 2.4 サポートするバージョンとサポートしないバージョン ............................................................ 5 3 新機能 ................................................................................................................................................ 6 3.1 インテル® Xeon Phi™ 製品ファミリーのアップデート ......................................................... 12 4 動作環境 .......................................................................................................................................... 13 4.1 プロセッサーの要件 ...................................................................................................................... 13 4.2 ディスク空き容量の要件 .............................................................................................................. 13 4.3 オペレーティング・システムの要件 ............................................................................................. 13 -
Introduction to High Performance Computing
Introduction to High Performance Computing Shaohao Chen Research Computing Services (RCS) Boston University Outline • What is HPC? Why computer cluster? • Basic structure of a computer cluster • Computer performance and the top 500 list • HPC for scientific research and parallel computing • National-wide HPC resources: XSEDE • BU SCC and RCS tutorials What is HPC? • High Performance Computing (HPC) refers to the practice of aggregating computing power in order to solve large problems in science, engineering, or business. • Purpose of HPC: accelerates computer programs, and thus accelerates work process. • Computer cluster: A set of connected computers that work together. They can be viewed as a single system. • Similar terminologies: supercomputing, parallel computing. • Parallel computing: many computations are carried out simultaneously, typically computed on a computer cluster. • Related terminologies: grid computing, cloud computing. Computing power of a single CPU chip • Moore‘s law is the observation that the computing power of CPU doubles approximately every two years. • Nowadays the multi-core technique is the key to keep up with Moore's law. Why computer cluster? • Drawbacks of increasing CPU clock frequency: --- Electric power consumption is proportional to the cubic of CPU clock frequency (ν3). --- Generates more heat. • A drawback of increasing the number of cores within one CPU chip: --- Difficult for heat dissipation. • Computer cluster: connect many computers with high- speed networks. • Currently computer cluster is the best solution to scale up computer power. • Consequently software/programs need to be designed in the manner of parallel computing. Basic structure of a computer cluster • Cluster – a collection of many computers/nodes. • Rack – a closet to hold a bunch of nodes. -
Intel® Audience Impression Metric (AIM) Suite User Guide July 2011 2 Document Number: 465720-1.1
Intel® Audience Impression Metric (AIM) Suite User Guide July 2011 Revision 1.1 Document Number: 465720 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that license. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing Processor
Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing Processor Douglas Doerfler, Jack Deslippe, Samuel Williams, Leonid Oliker, Brandon Cook, Thorsten Kurth, Mathieu Lobet, Tareq Malas, Jean-Luc Vay, and Henri Vincenti Lawrence Berkeley National Laboratory {dwdoerf, jrdeslippe, swwilliams, loliker, bgcook, tkurth, mlobet, tmalas, jlvay, hvincenti}@lbl.gov Abstract The Roofline Performance Model is a visually intuitive method used to bound the sustained peak floating-point performance of any given arithmetic kernel on any given processor architecture. In the Roofline, performance is nominally measured in floating-point operations per second as a function of arithmetic intensity (operations per byte of data). In this study we determine the Roofline for the Intel Knights Landing (KNL) processor, determining the sustained peak memory bandwidth and floating-point performance for all levels of the memory hierarchy, in all the different KNL cluster modes. We then determine arithmetic intensity and performance for a suite of application kernels being targeted for the KNL based supercomputer Cori, and make comparisons to current Intel Xeon processors. Cori is the National Energy Research Scientific Computing Center’s (NERSC) next generation supercomputer. Scheduled for deployment mid-2016, it will be one of the earliest and largest KNL deployments in the world. 1 Introduction Moving an application to a new architecture is a challenge, not only in porting of the code, but in tuning and extracting maximum performance. This is especially true with the introduction of the latest manycore and GPU-accelerated architec- tures, as they expose much finer levels of parallelism that can be a challenge for applications to exploit in their current form. -
Intel Unveils All New 2010 Intel® Core™ Processor Family
Intel Unveils All New 2010 Intel® Core™ Processor Family Industry's Smartest, Most Advanced Technology Available in Variety of Price Points LAS VEGAS, Jan 07, 2010 (BUSINESS WIRE) -- Intel Corporation: NEWS HIGHLIGHTS 1 ● Mainstream processors now offer Intel(R) Turbo Boost Technology , automatically adapting to an individual's performance needs ● First 32 nanometer processors and first time Intel is mass-producing a variety of chips at mainstream prices at start of new manufacturing process, reflecting last year's $7 billion investment during economic recession 4 ● Intel(R) Core(TM) i5 processors are about twice as fast as comparable existing PCs for visibly faster video, photo and music downloading experience ● Historic milestone: select processors integrate graphics directly on processors; also include Intel's second generation high-k metal gate transistors ● Beyond laptops and PCs, processors also target ATMs, travel kiosks, digital displays ● More than 10 new chipsets and new 802.11n WiFi and WiMAX products with new Intel(R) My WiFi features Intel Corporation introduced its all new 2010 Intel(R) Core(TM) family of processors today, delivering unprecedented integration and smart performance, including Intel(R) Turbo Boost Technology1 for laptops, desktops and embedded devices. The introduction of new Intel(R) Core(TM) i7, i5 and i3 chips coincides with the arrival of Intel's groundbreaking new 32 nanometer (nm) manufacturing process - which for the first time in the company's history - will be used to immediately produce and deliver processors and features at a variety of price points, and integrate high-definition graphics inside the processor. This unprecedented ramp and innovation reflects Intel's $7 billion investment announced early last year in the midst of a major global economic recession. -
HP Zbook 15 G3 Mobile Workstation
QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview HP ZBook 15 G3 Mobile Workstation FRONT VIEW 1. WLAN antennas (2) 9. Lower right, center, left touchpad buttons 2. Internal microphone 10. Storage light indicator 3. Webcam light (with webcam) 11. Battery light indicator 4. Webcam 12. Power light indicator 5. Wireless button 13. Wireless light indicator 6. Volume mute button 14. Upper Right, Center, Left Touchpad buttons 7. Fingerprint reader (select models only) 15. Pointstick 8. Touchpad with scroll zone 16. Power button c04834946 — DA -15374 Worldwide — Version 2 — November 25, 2015 Page 1 QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview LEFT VIEW 1. Security cable slot 4. USB 3.0 port (charging) 2. RJ-45 (Ethernet) 5. SD Card reader 3. VGA port RIGHT VIEW 1. Smart Card reader 5. (2) Thunderbolt™ 3* ports 2. Stereo microphone in / headphone-out combo jack 6. Power connector 3. (2) USB 3.0 Ports 7. Power LED 4. HDMI port c04834946 — DA -15374 Worldwide — Version 2 — November 25, 2015 Page 2 QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview BOTTOM VIEW 1. Speakers c04834946 — DA -15374 Worldwide — Version 2 — November 25, 2015 Page 3 QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview At A Glance Windows® 10 editions, Windows® 7 editions, or FreeDOS Mainstream full performance industrial design, Casted magnesium-reinforced chassis, top cover frame features soft touch paint with lightweight aluminum insert anodized in HP’s new “Space Silver” color with chemical etching. Backlight keyboard in full aluminum deck with magnesium bottom reinforcement, chemically strengthened glass touchpad, and updated system functions indicators. -
DIGITAL WORKPLACE EXPERIENCES Powered by Aruba Mobile First Architecture Jason White Ojchief Nguyen Technologist – Hybrid I.T
DIGITAL WORKPLACE EXPERIENCES Powered by Aruba Mobile First Architecture Jason White OJChief Nguyen Technologist – Hybrid I.T. Systems Engineering Manager [email protected]@hpe.com @networksjuice “Customer First, Customer Last” Dedicated Sales and Support HPE’s Intelligent Edge Business Unit Intelligent Edge Networking for the Mobile, Cloud, and IoT Era Founded: 2002 Innovation Pioneers IPO: 2007 Leader in Wired and Joined HPE: 2015 Wireless Networking Innovation Hubs Santa Clara, CA -HQ, Portland, Canada, China, Costa Rica, India Workplace experiences Operational experiences for mobile workforce with real-time insights INTELLIGENT EDGE INSIGHTS FROM THE CONVERGENCE OF PEOPLE, PLACES, AND THINGS Brand experiences IT experiences with fueling revenue automation and generation predictive analytics EVOLUTION OF INTELLIGENT EDGE 802.11n 20B Intel Microsoft Enables Connected Introduces Introduces Network “Things” Centrino Right-sizing Lync 2018 and 2003 2007 2009 2010 2013 2014 Beyond Apple iPad 1.5M servers Apple iPhone Enters in operation Drives BYOD Board Rooms INTELLIGENT EDGE DATACENTER, PRIVATE & PUBLIC CLOUD WAN CAMPUS BRANCH INDUSTRIAL SITE Mobile-First Mobile-First, Mobile-First, Cloud-First Cloud-First IoT Centric Mobile-First Campus Infrastructure Management Security Experience Campus AP Access AirWave ClearPass NetInsight Beacons Core / Agg Mobility Master IntroSpect Controllers Partnerships Mobile-First, Cloud-First Branch – “SD-Branch” Infrastructure Security Management Experience Branch Gateways Access Switches -
Introduction to Intel Xeon Phi (“Knights Landing”) on Cori
Introduction to Intel Xeon Phi (“Knights Landing”) on Cori" Brandon Cook! Brian Friesen" 2017 June 9 - 1 - Knights Landing is here!" • KNL nodes installed in Cori in 2016 • “Pre-produc=on” for ~ 1 year – No charge for using KNL nodes – Limited access (un7l now!) – Intermi=ent down7me – Frequent so@ware changes • KNL nodes on Cori will soon enter produc=on – Charging Begins 2017 July 1 - 2 - Knights Landing overview" Knights Landing: Next Intel® Xeon Phi™ Processor Intel® Many-Core Processor targeted for HPC and Supercomputing First self-boot Intel® Xeon Phi™ processor that is binary compatible with main line IA. Boots standard OS. Significant improvement in scalar and vector performance Integration of Memory on package: innovative memory architecture for high bandwidth and high capacity Integration of Fabric on package Three products KNL Self-Boot KNL Self-Boot w/ Fabric KNL Card (Baseline) (Fabric Integrated) (PCIe-Card) Potential future options subject to change without notice. All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification. - 3 - Knights Landing overview TILE CHA 2 VPU 2 VPU Knights Landing Overview 1MB L2 Core Core 2 x16 X4 MCDRAM MCDRAM 1 x4 DMI MCDRAM MCDRAM Chip: 36 Tiles interconnected by 2D Mesh Tile: 2 Cores + 2 VPU/core + 1 MB L2 EDC EDC PCIe D EDC EDC M Gen 3 3 I 3 Memory: MCDRAM: 16 GB on-package; High BW D Tile D D D DDR4: 6 channels @ 2400 up to 384GB R R 4 36 Tiles 4 IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset C DDR MC connected by DDR MC C Node: 1-Socket only H H A 2D Mesh A Fabric: Omni-Path on-package (not shown) N Interconnect N N N E E L L Vector Peak Perf: 3+TF DP and 6+TF SP Flops S S Scalar Perf: ~3x over Knights Corner EDC EDC misc EDC EDC Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. -
Intel® Core™2 Duo Mobile Processor for Intel® Centrino® Duo Mobile Processor Technology
Intel® Core™2 Duo Mobile Processor for Intel® Centrino® Duo Mobile Processor Technology Datasheet September 2007 Document Number: 314078-004 INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Intel® Parallel Studio XE 2020 Update 2 Release Notes
Intel® Parallel StudIo Xe 2020 uPdate 2 15 July 2020 Contents 1 Introduction ................................................................................................................................................... 2 2 Product Contents ......................................................................................................................................... 3 2.1 Additional Information for Intel-provided Debug Solutions ..................................................... 4 2.2 Microsoft Visual Studio Shell Deprecation ....................................................................................... 4 2.3 Intel® Software Manager ........................................................................................................................... 5 2.4 Supported and Unsupported Versions .............................................................................................. 5 3 What’s New ..................................................................................................................................................... 5 3.1 Intel® Xeon Phi™ Product Family Updates ...................................................................................... 12 4 System Requirements ............................................................................................................................. 13 4.1 Processor Requirements........................................................................................................................ 13 4.2 Disk Space Requirements ..................................................................................................................... -
Effectively Using NERSC
Effectively Using NERSC Richard Gerber Senior Science Advisor HPC Department Head (Acting) NERSC: the Mission HPC Facility for DOE Office of Science Research Largest funder of physical science research in U.S. Bio Energy, Environment Computing Materials, Chemistry, Geophysics Particle Physics, Astrophysics Nuclear Physics Fusion Energy, Plasma Physics 6,000 users, 48 states, 40 countries, universities & national labs Current Production Systems Edison 5,560 Ivy Bridge Nodes / 24 cores/node 133 K cores, 64 GB memory/node Cray XC30 / Aries Dragonfly interconnect 6 PB Lustre Cray Sonexion scratch FS Cori Phase 1 1,630 Haswell Nodes / 32 cores/node 52 K cores, 128 GB memory/node Cray XC40 / Aries Dragonfly interconnect 24 PB Lustre Cray Sonexion scratch FS 1.5 PB Burst Buffer 3 Cori Phase 2 – Being installed now! Cray XC40 system with 9,300 Intel Data Intensive Science Support Knights Landing compute nodes 10 Haswell processor cabinets (Phase 1) 68 cores / 96 GB DRAM / 16 GB HBM NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec Support the entire Office of Science 30 PB of disk, >700 GB/sec I/O bandwidth research community Integrate with Cori Phase 1 on Aries Begin to transition workload to energy network for data / simulation / analysis on one system efficient architectures 4 NERSC Allocation of Computing Time NERSC hours in 300 millions DOE Mission Science 80% 300 Distributed by DOE SC program managers ALCC 10% Competitive awards run by DOE ASCR 2,400 Directors Discretionary 10% Strategic awards from NERSC 5 NERSC has ~100% utilization Important to get support PI Allocation (Hrs) Program and allocation from DOE program manager (L. -
Intel® Centrino® Processor Technology Launch Demonstration
Intel Corporation 2200 Mission College Blvd. P.O. Box 58119 Santa Clara, CA 95052-8119 Intel® Centrino® Processor Technology Demo Backgrounder CONTACT: Connie Brown (503) 791-2367 mobile [email protected] Intel works with the software industry to optimize software to improve the experience for Intel® Centrino® processor technology consumer and business users. Below are some software providers that have specifically optimized their applications to work great with the latest Intel Centrino-based notebook PCs. Additionally, this document highlights new technologies and performance enhancements in the latest Intel Centrino processor technology. For Consumers: Video Playback Demonstrating how the Mobile Intel® 965 Express chipset with Intel® Clear Video Technology improves the appearance of standard definition content as compared to the previous generation chipset and how the dual-core performance of Intel Centrino processor technology enables playback of HD content such as HD-DVD* and Blu-Ray* titles. Software applications: Intel Clear Video Technology: Microsoft Windows* Media Player 11 Blu-ray playback: Intervideo WinDVD* BD for VAIO* HD-DVD* playback: HP QuickPlay* Hardware shown in this demo includes: San Francisco Intel Clear Video Technology: Gateway W650U FVM1 Blu-ray* playback: Sony VAIO* VGN-FZ180E HD-DVD* playback: HP Pavilion* hd2000 New York Intel Clear Video Technology: Sony VAIO* VGN-FZ160E Blu-ray* playback: Sony VAIO* VGN-FZ180E HD-DVD* playback: HP Pavilion* hd2000 – more – Intel/Page 2 Intel® Media Share Software Demonstrating how Intel® Media Share Software allows you to view content hosted on an Intel® Viiv-based PC anywhere in the home over wireless and allows you to download your personal content to take with you on-the-go.