Artemisia Absinthium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thesis Sci 2009 Bergh N G.Pdf
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation. -
Die Plantfamilie ASTERACEAE: 6
ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae. -
Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock
Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock 1 Identification of Petitioned Substance* 2 3 Chemical Names: 48 Ivermectin: Heart Guard, Sklice, Stomectol, 4 Moxidectin:(1'R,2R,4Z,4'S,5S,6S,8'R,10'E,13'R,14'E 49 Ivomec, Mectizan, Ivexterm, Scabo 6 5 ,16'E,20'R,21'R,24'S)-21',24'-Dihydroxy-4 50 Thiabendazole: Mintezol, Tresaderm, Arbotect 6 (methoxyimino)-5,11',13',22'-tetramethyl-6-[(2E)- 51 Albendazole: Albenza 7 4-methyl-2-penten-2-yl]-3,4,5,6-tetrahydro-2'H- 52 Levamisole: Ergamisol 8 spiro[pyran-2,6'-[3,7,1 9]trioxatetracyclo 53 Morantel tartrate: Rumatel 9 [15.6.1.14,8.020,24] pentacosa[10,14,16,22] tetraen]- 54 Pyrantel: Banminth, Antiminth, Cobantril 10 2'-one; (2aE, 4E,5’R,6R,6’S,8E,11R,13S,- 55 Doramectin: Dectomax 11 15S,17aR,20R,20aR,20bS)-6’-[(E)-1,2-Dimethyl-1- 56 Eprinomectin: Ivomec, Longrange 12 butenyl]-5’,6,6’,7,10,11,14,15,17a,20,20a,20b- 57 Piperazine: Wazine, Pig Wormer 13 dodecahydro-20,20b-dihydroxy-5’6,8,19-tetra- 58 14 methylspiro[11,15-methano-2H,13H,17H- CAS Numbers: 113507-06-5; 15 furo[4,3,2-pq][2,6]benzodioxacylooctadecin-13,2’- Moxidectin: 16 [2H]pyrano]-4’,17(3’H)-dione,4’-(E)-(O- Fenbendazole: 43210-67-9; 70288-86-7 17 methyloxime) Ivermectin: 59 Thiabendazole: 148-79-8 18 Fenbendazole: methyl N-(6-phenylsulfanyl-1H- 60 Albendazole: 54965-21-8 19 benzimidazol-2-yl) carbamate 61 Levamisole: 14769-72-4 20 Ivermectin: 22,23-dihydroavermectin B1a +22,23- 21 dihydroavermectin B1b 62 Morantel tartrate: 26155-31-7 63 Pyrantel: 22204-24-6 22 Thiabendazole: 4-(1H-1,3-benzodiazol-2-yl)-1,3- 23 thiazole -
Elytropappus Rhinocerotis
Alfred Maroyi /J. Pharm. Sci. & Res. Vol. 11(10), 2019, 3508-3513 Ethnomedicinal uses, phytochemistry and pharmacological properties of Elytropappus rhinocerotis Alfred Maroyi Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa. Abstract Elytropappus rhinocerotis is a small perennial shrub widely used as traditional medicine in South Africa. This study is aimed at providing a critical review of the botany, medicinal uses, phytochemistry and pharmacological properties of E. rhinocerotis. Documented information on the botany, medicinal uses, phytochemistry and pharmacological properties of E. rhinocerotis was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, Science Direct, Elsevier, Pubmed and Web of Science. Additional information on the botany, medicinal uses, phytochemistry and pharmacological properties of E. rhinocerotis was gathered from pre-electronic sources such as book chapters, books, journal articles and scientific publications sourced from the University library. This study showed that the leaves, roots, stems and twigs of E. rhinocerotis are mainly used as appetite stimulant and tonic, and traditional medicines for high blood pressure, backache, convulsions, foot perspiration and odour, respiratory problems, sores and wounds, bladder problems, kidney problems, vermifuge, diabetes, fever, painful hands and feet, influenza, ulcers, cancer and stomach cancer and stomach problems. Phytochemical compounds identified from the aerial parts and -
Wasps and Bees in Southern Africa
SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI. -
Flora of the Kap River Reserve, Eastern Cape, South Africa
Bothalia 29,1: 139-149 (1999) Flora of the Kap River Reserve, Eastern Cape, South Africa E C. CLOETE * and R.A. LUBKE** Keywords: endangered, endemic, checklist, grassland, thicket. Eastern Cape. South Africa ABSTRACT A detailed analysis ot the flora of the newly proclaimed Kap River Reserve (600 ha) is given. The reserve is adjacent to the Fish River and some 5 km from the Fish River Mouth It consists of a coastal plateau up to 100 m a.s.I. which is steeply dissected by the two rivers that partially form the boundary of the reserve. The flora of the reserve was sampled over a peri od o f three years and plants were collected in all the vegetation types of grassland, thicket and forest. 488 species were col lected with a species to family ratio of 4:4. The majority of the taxa recorded represent the major phytochoria of the region. Nineteen species are endemic to the Eastern Cape, two are classed as vulnerable, five are rare, six are protected and a fur ther seventeen are of uncertain status. The flora of the Kap River has closest affinities to that of the Alexandria Forest. INTRODUCTION STUDY AREA The Kap River Reserve, ± 33° 30' S and 27° 9’ E. is The Kap River Reserve (6 km2 in extent) is located in situated at the confluence of the Kap and Fish Rivers the Bathurst District in the wedge formed between the along the east coast of South Africa (Figure 1). The Kap River and the Fish River estuary (Figure 2). -
A Vegetation Map for the Little Karoo. Unpublished Maps and Report for a SKEP Project Supported by CEPF Grant No 1064410304
A VEGETATION MAP FOR THE LITTLE KAROO. A project supported by: Project team: Jan Vlok, Regalis Environmental Services, P.O. Box 1512, Oudtshoorn, 6620. Richard Cowling, University of Port Elizabeth, P.O. Box 1600, Port Elizabeth, 6000. Trevor Wolf, P.O. Box 2779, Knysna, 6570. Date of Report: March 2005. Suggested reference to maps and this report: Vlok, J.H.J., Cowling, R.M. & Wolf, T., 2005. A vegetation map for the Little Karoo. Unpublished maps and report for a SKEP project supported by CEPF grant no 1064410304. EXECUTIVE SUMMARY: Stakeholders in the southern karoo region of the SKEP project identified the need for a more detailed vegetation map of the Little Karoo region. CEPF funded the project team to map the vegetation of the Little Karoo region (ca. 20 000 km ²) at a scale of 1:50 000. The main outputs required were to classify, map and describe the vegetation in such a way that end-users could use the digital maps at four different tiers. Results of this study were also to be presented to stakeholders in the region to solicit their opinion about the dissemination of the products of this project and to suggest how this project should be developed further. In this document we explain how a six-tier vegetation classification system was developed, tested and improved in the field and the vegetation was mapped. Some A3-sized examples of the vegetation maps are provided, with the full datasets available in digital (ARCVIEW) format. A total of 56 habitat types, that comprises 369 vegetation units, were identified and mapped in the Little Karoo region. -
Species Delimitation and Speciation Process in the Seriphium Plumosum L
Species delimitation and speciation process in the Seriphium plumosum L. complex (Gnaphalieae: Asteraceae) in South Africa By Zaynab Shaik Dissertation presented in fulfilment of the degree of Master of Science specialising in Biological Sciences Under supervision by: Assoc. Prof. G.A. Verboom (Department of Biological Sciences, University of Cape Town) Dr N.G. Bergh (Compton Herbarium, South African National Biodiversity Institute) Department of Biological Sciences, University of Cape Town February 2019 Abstract The remarkable richness of the Cape Floristic Region (CFR) and the high in situ diversification inferred for the region prompt interest in two key areas: first, to what extent has the true species richness of the Cape been discovered and described, and second, what are the key drivers of speciation? Steady efforts in taxonomy dating back to the early 17th century have led some to estimate that over 99% of species in the Cape flora have already been described. However, taxonomic research in the Cape has, as elsewhere, relied on morphology for delimiting species, implying that undiscovered species diversity among cryptic taxa may be substantial. Early ideas regarding the drivers of diversification in the Cape flora emphasised climatically-induced vicariant speciation. Since that time, both vicariance and ecological speciation have been invoked as drivers of diversification. However, the relative contributions of either of these modes to the richness of the flora remains unclear. The present work focuses on Seriphium plumosum, a species complex in the daisy tribe Gnaphalieae with a recent evolutionary origin and a core distribution in the Cape Floristic Region. The species’ problematic taxonomic history, its substantial morphological and ecological variability, as well as its large geographic distribution in southern Africa suggest that the current concept of the species houses multiple independent evolutionary species. -
L'absinthe (Artemisia Absinthium
L’Absinthe (Artemisia absinthium L.) : approche ethnobotanique Aminthe Renouf To cite this version: Aminthe Renouf. L’Absinthe (Artemisia absinthium L.) : approche ethnobotanique. Sciences phar- maceutiques. 2019. dumas-02459122 HAL Id: dumas-02459122 https://dumas.ccsd.cnrs.fr/dumas-02459122 Submitted on 29 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. U.F.R. Santé Faculté des Sciences Pharmaceutiques THESE Pour obtenir le diplôme d’état de Docteur en Pharmacie Préparée au sein de l’Université de Caen Normandie L’Absinthe (Artemisia absinthium L.) : Approche ethnobotanique Présentée par Aminthe RENOUF Soutenue publiquement le lundi 2 décembre 2019 devant le jury composé de Professeur des Universités/ Botanique, Mycologie, Biotechnologies/ U.F.R Santé Monsieur David GARON Président du jury Faculté des Sciences Pharmaceutiques Université de Caen Normandie Maitre de Conférences des Universités/ Botanique, Mycologie, Biotechnologies/ Monsieur Jean-Philippe RIOULT U.F.R Santé Faculté des Sciences Directeur de thèse Pharmaceutiques Université de Caen Normandie Maitre de Conférences des Universités/ Pharmacognosie/ U.F.R Santé Faculté des Monsieur Jérôme QUINTIN Examinateur Sciences Pharmaceutiques Université de Caen Normandie Docteur en Pharmacie diplômée de la Madame Alice MAZE Faculté des Sciences Pharmaceutiques de Examinateur Rennes Thèse dirigée par Jean-Philippe RIOULT U.F.R. -
Vegetation Patterns and Dynamics of Renosterveld at Agter-Groeneberg Conservancy, Western Cape, South Africa
Vegetation Patterns and Dynamics of Renosterveld at Agter-Groeneberg Conservancy, Western Cape, South Africa By Benjamin Alan Walton Thesis presented in partial fulfillment of the requirements for the degree of Master of Science at the Stellenbosch University Supervisor Professor Sue J Milton (Department of Conservation Ecology) Co-supervisors A le Roux (CapeNature) Professor L Mucina (Department of Botany and Zoology) April 2006 i Φ Poem “Colour awash over forelands of fertile clay” “When the winters’ cold and grim the Oxalis’s start to brim - they open up. The first feast for bees, in the shrubland short of trees not breeze. Sun’s rays soon last longer in the days: Babianas, Chlorophytums, Geissorhizas, Gladiolius’s, Hesperanthas, Lachenalias, Moraeas and Trachyandras spread their cheerful gaze. Accompanied by annual daisies and bright gladioli filling the air with strong scents of honey - monkey beetles waste no time as they perch upon delicate flowers, lest they are caught in the season’s showers. As if to suggest this is the best nature sends small midge flies to pollinate in jest, and surround mammals to tease their bloody channels. Another month has come and gone - not long now for the raaptol and Micranthus which provide nectar for brown butterflies and painted ladies. Then is the last sequence of bulbs - the fine white-filled fields of chinkerinchees. Grasses’ hour is now soaking up the sun displaying beautifully crafted silhouettes till summers end. As if heaven sent delicate geophytes are still producing their charm, when botanists avoid the midday sun. A brief lapse in displays until the autumn reds begin the seasonal cycles.” Figure a: From left to right: Moraea villosa (Ker Gawl.) Ker Gawl. -
Studies Towards the Enantioselective Total Synthesis of Biological Active
Studies Towards Synthesis of Biologically Active Guaianolides: Enantioselective Total Synthesis of (+)-Arglabin Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Dr. rer. nat. an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Srinivas Kalidindi aus Kumudavalli (Indien) Regensburg 2009 Die Arbeit wurde angeleitet von: Prof. Dr. O. Reiser Promotionsgesuch eingereicht am: 3 Juni, 2009 Promotionskolloquium am: 22 Juni, 2009 Prüfungsausschuss: Vorsitz: Prof. Dr. Sigurd Elz 1. Gutachter: Prof. Dr. Oliver Reiser 2. Gutachter: Prof. Dr. Burkhard König 3. Prüfer: Prof. Dr. Jörg Heilmann 2 Der experimentelle Teil der vorliegenden Arbeit wurde unter der Leitung von Herrn Prof. Dr. Oliver Reiser in der Zeit von September 2005 bis Februar 2009 am Institut für Organische Chemie der Universität Regensburg, Regensburg, Germany. Herrn Prof. Dr. Oliver Reiser möchte ich herzlich für die Überlassung des äußerst interessanten Themas, die anregenden Diskussionen und seine stete Unterstützung während der Durchführung dieser Arbeit danken. 3 4 YÉÜ Åç ÑtÜxÇàá 9 àxtv{xÜáAAAAA “Research is to see what everybody else has seen, and to think what nobody else has thought” - Albert Szent-Gyorgyi 1937 Nobel Prize for Medicine 5 Table of Content Table of Content STUDIES TOWARDS SYNTHESIS OF BIOLOGICALLY ACTIVE GUAIANOLIDES: ENANTIOSELECTIVE TOTAL SYNTHESIS OF (+)-ARGLABIN 1. INTRODUCTION 9 1.1 Natural products as an important source of drugs 9 1.2 Total synthesis of natural products as a tool for drug discovery 10 1.3 Biologically active guaianolides and dimeric guaianolides 11 1.4 Biogenesis of sesquiterpene lactones 14 1.5 Dimeric guaianolides 17 1.6 Synthesis of guaianolides and dimeric guaianolides 19 1.7 Conclusions 24 2. -
Sesquiterpenoid Lactones
Sesquiterpenes SESQUITERPENOID LACTONES Prof. Dr. Ali H. Meriçli Sesquiterpenoid lactones form a group of substances important by its size- approxymately 3.000 known structures- which was described in the older texts of Materia Medica, under the evocative names “bitter principles”. Sesquiterpenoid lactones have a rather scattered botanical distribution, bu they can be found mostly in the Apiaceae and especially in Asteraceae. STRUCTURE The skleta of sesquiterpenoid lactones vary, bu they all arise from the cyclodecadiene-type product of the cyclization 2E,6E-farnesyl pyrophosphate. Sesquiterpenes are C-15 constituents occuring from 3 isopren units 5 4 3 2 isopren 1 5 5 4 4 1 3 OPP 1 3 OPP ISOPENTENYL DIMETHYLALLYL PYROPHOSPHATE PYROPHOSPHATE ( IPP ) ( DMAPP ) 10 5 5 5 9 4 4 4 1 3 6 8 OPP 1 3 OPP 1 3 OPP Geranyl pyrophosphate ( GPP ) OPP 5 5 4 4 OPP 1 1 3 OPP ISOPENTENYL PYROPHOSPHATE Geranyl pyrophosphate IPP GPP 10 15 5 9 14 4 11 1 3 6 8 13 OPP FARNESYL PYROPHOSPHATE ( FPP ) 15-C SESQUITERPENE FARNESYL PYROPHOSPHATE ( FPP ) 10 15 5 9 14 4 1 3 8 11 13 OPP 6 OPP farnesene OH E E Z Z bisabolene bisabolol cadinane cadinene humulene caryophyllene E Z germacrane 14 1 9 8 2 10 6 13 3 4 5 11 15 12 Guaiane ring chamazulene The main sesquiterpenoid lactone groups are : Germacranolides, Guaianolides, Pseudoguaianolides, Eudesmanolides, Elemanolides and Eremophilanolides. 1 9 8 2 3 14 7 Germacrane 4 5 6 13 11 O 12 15 O Germacranolide 14 1 9 14 1 8 2 9 8 2 Eudesmanolide 3 6 7 7 12 3 4 6 4 5 5 13 11 11 O 12 15 13 15 Eudesmane O 14 10 9 8 1 7 6 11 13 3 5 12 4 O 15 O Guaiane Guaianolide There are many secondary structural variations which affect : The lactone,which can be cis-6,7, cis-7,8, trans-6,7 or in most cases trans-7,8.