Lepton Number Violating Processes and Majorana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Decays of the Tau Lepton*
SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources. -
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved. -
Accessible Lepton-Number-Violating Models and Negligible Neutrino Masses
PHYSICAL REVIEW D 100, 075033 (2019) Accessible lepton-number-violating models and negligible neutrino masses † ‡ Andr´e de Gouvêa ,1,* Wei-Chih Huang,2, Johannes König,2, and Manibrata Sen 1,3,§ 1Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA 2CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark 3Department of Physics, University of California Berkeley, Berkeley, California 94720, USA (Received 18 July 2019; published 25 October 2019) Lepton-number violation (LNV), in general, implies nonzero Majorana masses for the Standard Model neutrinos. Since neutrino masses are very small, for generic candidate models of the physics responsible for LNV, the rates for almost all experimentally accessible LNV observables—except for neutrinoless double- beta decay—are expected to be exceedingly small. Guided by effective-operator considerations of LNV phenomena, we identify a complete family of models where lepton number is violated but the generated Majorana neutrino masses are tiny, even if the new-physics scale is below 1 TeV. We explore the phenomenology of these models, including charged-lepton flavor-violating phenomena and baryon- number-violating phenomena, identifying scenarios where the allowed rates for μ− → eþ-conversion in nuclei are potentially accessible to next-generation experiments. DOI: 10.1103/PhysRevD.100.075033 I. INTRODUCTION Experimentally, in spite of ambitious ongoing experi- Lepton number and baryon number are, at the classical mental efforts, there is no evidence for the violation of level, accidental global symmetries of the renormalizable lepton-number or baryon-number conservation [5]. There Standard Model (SM) Lagrangian.1 If one allows for are a few different potential explanations for these (neg- generic nonrenormalizable operators consistent with the ative) experimental results, assuming degrees-of-freedom SM gauge symmetries and particle content, lepton number beyond those of the SM exist. -
Neutrino Opacity I. Neutrino-Lepton Scattering*
PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964 Neutrino Opacity I. Neutrino-Lepton Scattering* JOHN N. BAHCALL California Institute of Technology, Pasadena, California (Received 24 June 1964) The contribution of neutrino-lepton scattering to the total neutrino opacity of matter is investigated; it is found that, contrary to previous beliefs, neutrino scattering dominates the neutrino opacity for many astro physically important conditions. The rates for neutrino-electron scattering and antineutrino-electron scatter ing are given for a variety of conditions, including both degenerate and nondegenerate gases; the rates for some related reactions are also presented. Formulas are given for the mean scattering angle and the mean energy loss in neutrino and antineutrino scattering. Applications are made to the following problems: (a) the detection of solar neutrinos; (b) the escape of neutrinos from stars; (c) neutrino scattering in cosmology; and (d) energy deposition in supernova explosions. I. INTRODUCTION only been discussed for the special situation of electrons 13 14 XPERIMENTS1·2 designed to detect solar neu initially at rest. · E trinos will soon provide crucial tests of the theory In this paper, we investigate the contribution of of stellar energy generation. Other neutrino experiments neutrino-lepton scattering to the total neutrino opacity have been suggested as a test3 of a possible mechanism of matter and show, contrary to previous beliefs, that for producing the high-energy electrons that are inferred neutrino-lepton scattering dominates the neutrino to exist in strong radio sources and as a means4 for opacity for many astrophysically important conditions. studying the high-energy neutrinos emitted in the decay Here, neutrino opacity is defined, analogously to photon of cosmic-ray secondaries. -
Review of Lepton Universality Tests in B Decays
January 4, 2019 Review of Lepton Universality tests in B decays Simone Bifani∗, S´ebastienDescotes-Genony, Antonio Romero Vidalz, Marie-H´el`ene Schunex Abstract Several measurements of tree- and loop-level b-hadron decays performed in the recent years hint at a possible violation of Lepton Universality. This article presents an experimental and theoretical overview of the current status of the field. arXiv:1809.06229v2 [hep-ex] 3 Jan 2019 Published in Journal of Physics G: Nuclear and Particle Physics, Volume 46, Number 2 ∗University of Birmingham, School of Physics and Astronomy Edgbaston, Birmingham B15 2TT, United Kingdom yLaboratoire de Physique Th´eorique(UMR 8627), CNRS, Universit´eParis-Sud, Universit´eParis-Saclay, 91405 Orsay, France zInstituto Galego de F´ısicade Altas Enerx´ıas(IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain xLaboratoire de l'Acc´el´erateurLin´eaire,CNRS/IN2P3, Universit´eParis-Sud, Universit´eParis-Saclay, 91440 Orsay, France Contents 1 Introduction 1 2 Lepton Universality in the Standard Model 2 3 Overview of Lepton Universality tests beyond the B sector 3 3.1 Electroweak sector . .4 3.2 Decays of pseudoscalar mesons . .5 3.3 Purely leptonic decays . .7 3.4 Quarkonia decays . .7 3.5 Summary . .7 4 Theoretical treatment of b-quark decays probing Lepton Universality 8 4.1 Effective Hamiltonian . .8 4.2 Hadronic quantities . 10 4.3 Lepton Universality observables . 13 5 Experiments at the B-factories and at the Large Hadron Collider 13 5.1 B-factories . 13 5.2 Large Hadron Collider . 16 5.3 Complementarity between the B-factories and the LHC . -
1 Drawing Feynman Diagrams
1 Drawing Feynman Diagrams 1. A fermion (quark, lepton, neutrino) is drawn by a straight line with an arrow pointing to the left: f f 2. An antifermion is drawn by a straight line with an arrow pointing to the right: f f 3. A photon or W ±, Z0 boson is drawn by a wavy line: γ W ±;Z0 4. A gluon is drawn by a curled line: g 5. The emission of a photon from a lepton or a quark doesn’t change the fermion: γ l; q l; q But a photon cannot be emitted from a neutrino: γ ν ν 6. The emission of a W ± from a fermion changes the flavour of the fermion in the following way: − − − 2 Q = −1 e µ τ u c t Q = + 3 1 Q = 0 νe νµ ντ d s b Q = − 3 But for quarks, we have an additional mixing between families: u c t d s b This means that when emitting a W ±, an u quark for example will mostly change into a d quark, but it has a small chance to change into a s quark instead, and an even smaller chance to change into a b quark. Similarly, a c will mostly change into a s quark, but has small chances of changing into an u or b. Note that there is no horizontal mixing, i.e. an u never changes into a c quark! In practice, we will limit ourselves to the light quarks (u; d; s): 1 DRAWING FEYNMAN DIAGRAMS 2 u d s Some examples for diagrams emitting a W ±: W − W + e− νe u d And using quark mixing: W + u s To know the sign of the W -boson, we use charge conservation: the sum of the charges at the left hand side must equal the sum of the charges at the right hand side. -
Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2 -
Production of the Doubly Charged Higgs Boson in Association with the SM Gauge Bosons And/Or Other HTM Scalars at Hadron Colliders
S S symmetry Article Production of the Doubly Charged Higgs Boson in Association with the SM Gauge Bosons and/or Other HTM Scalars at Hadron Colliders Bartosz Dziewit 1,* , Magdalena Kordiaczy ´nska 1 and Tripurari Srivastava 2 1 Institute of Physics, University of Silesia, 40-007 Katowice, Poland; [email protected] 2 Department of Physics, DIT University Dehradun, Uttarakhand 248009, India; [email protected] * Correspondence: [email protected] Abstract: We investigate an extension of the Standard Model with one additional triplet of scalar bosons. Altogether, the model contains four Higgs bosons. We analyze the associated production of the doubly charged scalar with the Standard Model gauge bosons and the remaining Higgs bosons of the model, which are: the light (SM) and heavy neutral scalars and a singly charged scalar. We estimate, in the context of the present (HL–LHC) and future (FCC–hh) hadron colliders, the most promising processes in which a single produced doubly charged Higgs boson is involved. Keywords: theoretical physics; particle physics; Standard Model; Higgs triplets; doubly charged Higgs bosons; hadron colliders Citation: Dziewit, B.; Kordiaczy´nska, M.; Srivastava, T. Production of the Doubly Charged Higgs Boson in 1. Introduction Association with the SM Gauge Bosons and/or Other HTM Scalars at Experimental evidence of the Higgs boson’s existence, found at the Large Hadron Hadron Colliders. Symmetry 2021, 13, Collider (LHC) [1,2], was a quantum leap in particle physics history. Nevertheless, ques- 1240. https://doi.org/10.3390/ tions related to the minimal Higgs sector are still open. From this point of view, extensions sym13071240 of the Standard Model can be realized in two ways: directly, by introducing additional multiplets, or indirectly, by extending the gauge group (e.g., left right symmetric mod- Academic Editors: Zoltán Trócsányi, els [3–8]). -
Lepton/Photon Highlights
sions produces two mutually oppo not be reconciled by a simple 'phase ance behaviour is in good agreement site jets, giving typical cigar-shaped space' model which assumes a with a simple quark-antiquark mod events. purely statistical decay pattern. el, the resonance decays show a As the energy is increased, one of Both theoreticians and experi totally different behaviour. these jets is seen to grow wider, but mentalists have shown vivid imagi Collinear back-to-back jets are in a very special way. Rather than nation in inventing procedures and ruled out as the dominant effect, but simply getting fatter with a cylindri names to describe this jet analysis, the data is in good agreement with a cal profile, it becomes planar, and at but the underlying structure is clear three-gluon decay model in which higher energies the jet clearly splits by simple visual inspection. Quanti the gluon fragmentation is assumed into two, giving an overall event with tative analysis is less clear-cut, but to be similar to that of a quark. Thi^ three coplanar jet components. the results of all the PETRA groups three-gluon process is the lowest The observed frequency of these are in line with QCD. order QCD contribution to the decay events agrees with quantum chro- Another scene of QCD predictions of upsilons into hadrons, and is now modynamics (QCD) calculations on is still the decay of the upsilon into clearly distinguishable from a simple the emission of hard gluons. The hadrons, as measured by PLUTO at statistical phase space description. events are incompatible with pure DORIS before its move to PETRA. -
Neutrino Vs Antineutrino Lepton Number Splitting
Introduction to Elementary Particle Physics. Note 18 Page 1 of 5 Neutrino vs antineutrino Neutrino is a neutral particle—a legitimate question: are neutrino and anti-neutrino the same particle? Compare: photon is its own antiparticle, π0 is its own antiparticle, neutron and antineutron are different particles. Dirac neutrino : If the answer is different , neutrino is to be called Dirac neutrino Majorana neutrino : If the answer is the same , neutrino is to be called Majorana neutrino 1959 Davis and Harmer conducted an experiment to see whether there is a reaction ν + n → p + e - could occur. The reaction and technique they used, ν + 37 Cl e- + 37 Ar, was proposed by B. Pontecorvo in 1946. The result was negative 1… Lepton number However, this was not unexpected: 1953 Konopinski and Mahmoud introduced a notion of lepton number L that must be conserved in reactions : • electron, muon, neutrino have L = +1 • anti-electron, anti-muon, anti-neutrino have L = –1 This new ad hoc law would explain many facts: • decay of neutron with anti-neutrino is OK: n → p e -ν L=0 → L = 1 + (–1) = 0 • pion decays with single neutrino or anti-neutrino is OK π → µ-ν L=0 → L = 1 + (–1) = 0 • but no pion decays into a muon and photon π- → µ- γ, which would require: L= 0 → L = 1 + 0 = 1 • no decays of muon with one neutrino µ- → e - ν, which would require: L= 1 → L = 1 ± 1 = 0 or 2 • no processes searched for by Davis and Harmer, which would require: L= (–1)+0 → L = 0 + 1 = 1 But why there are no decays µµµ →→→ e γγγ ? 2 Splitting lepton numbers 1959 Bruno Pontecorvo -
Introduction to Flavour Physics
Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.