České Názvy Živočichů V. Ryby a Rybovití Obratlovci (Pisces)

Total Page:16

File Type:pdf, Size:1020Kb

České Názvy Živočichů V. Ryby a Rybovití Obratlovci (Pisces) ČESKÉ NÁZVY ŽIVOČICHŮ V. RYBY A RYBOVITÍ OBRATLOVCI (PISCES) 7. PAPRSKOPLOUTVÍ (ACTINOPTERYGII) KOSTNATÍ (NEOPTERYGII) [ROPUšnicotvařÍ (ScorpaenifORmES) – OSTNOPLOUTVÍ (PERCIfORmES) – PERCOIdEI] LUBOmÍR HANEL, JIřÍ PLÍšTIL, JINdřICH NOVÁK Ryby_7.indd 1 9.11.2011 13:52:18 Studie byla vydána za finanční podpory ministerstva kultury ČR (výzkumný záměr mK ČR 00002327201) České názvy živočichů V. Ryby a rybovití obratlovci (Pisces). Paprskoploutví (Actinopterygii) Kostnatí (Neopterygii) [Ropušnicotvaří (Scorpaeniformes) – ostnoplout- ví (Perciformes) - Percoidei]. 7. Národní muzeum (zoologické oddělení), Praha. Autoři: Prof. RNdr. Lubomír Hanel, CSc. (fakulta životního prostředí, Katedra ekolo- gie, Česká zemědělská univerzita v Praze, Kamýcká 129, Praha 6 – Suchdol, 165 21), Jiří Plíštil (Trávník 1236, Rychnov nad Kněžnou, 516 01), RNdr. Jindřich Novák, Ph.d. (Česká inspekce životního prostředí, Na Břehu 267, Praha 9, 190 00) Editor řady: RNdr. Miloš Anděra, CSc. Vědecký redaktor: RNdr. Miloš Anděra, CSc. Recenzenti: doc. Ing. Stanislav Lusk, CSc., RNdr. Jan Andreska, Ph.d. Počítačová úprava textu: Vladimír Vyskočil – KORšACH Tisk: PBtisk Příbram 1. vydání Náklad 350 výtisků © 2011 Národní muzeum ISBN 978-80-7036-317-1 Kresba na obálce: Jiří Plíštil (štítník z čeledi Triglidae) Ryby_7.indd 2 9.11.2011 13:52:18 OBSAH: ROPUŠNICOTVAŘÍ – SCORPAENIFORMES . 9 Letuchovití (DactylopteridAE) . 9 ROPUšnicovití (ScorpaenidAE) . 9 Oválkovití (CaracanthidAE) . 16 SAmetovcovití (AploactinidAE) . 17 Vlajkovkovití (PataecidAE) . 17 RUdíkovití (GnathanacanthidAE) . 17 Rypáčkovcovití (CONGIOPOdIdAE) . 17 Štítníkovití (TRIGLIdAE) . 18 BRňákovití (PERISTEdIIdAE) . 20 placatkovití (BEmBRIdAE) . 21 zPLOšTělcovití (PlatycephalidAE) . 21 plochohlavcovití (HOPLICHTHYIdAE) . 22 CHmurnatkovití (ANOPLOPOmatidAE) . 22 Hřebeníkovití (HExagrammIdAE) . 22 holohlavovití (NORmANICHTHYIdAE) . 23 vrankovcovití (RHAmphocottidAE) . 23 ploutvíkovití (EREUNIIdAE) . 23 vrankovití (CottidAE) . 23 HOLOměnkovití (COmEPHORIdAE) . 27 pavrankovití (AbyssocottidAE) . 27 špičatičkovití (HEmITRIPTERIdAE) . 27 broníkovití (AGONIdAE) . 28 tlustohlavcovití (PsychrolutidAE) . 28 velkohlavcovití (BathylutichthyidAE) . 29 hranáčovití (CYCLOPERIdAE) . 29 terčovkovití (LiparidAE) . 30 OSTNOPLOUTVÍ – PERCIFORMES . 35 Robalovití (CentropomIdAE) . 35 okouníčkovití (AmbassidAE) . 36 latesovití (LatidAE) . 37 mOřčákovití (MoronidAE) . 37 3 Ryby_7.indd 3 9.11.2011 13:52:18 paokounovití (PERCICHTHYIdAE) . 37 perciliovití (PERCILIIdAE) . 38 kanicovkovití (AcropomatidAE) . 38 okaticovití (SYmPHYSANOdONTIdAE) . 38 mnohopilákovití (PolyprionidAE) . 38 kanicovití (SERRANIdAE) . 38 ropušicovití (CentrogenyidAE) . 47 hlavotrnovití (OstracoberycidAE) . 47 plochonosovití (CALLANTHIdAE) . 47 sapínovcovití (PSEUdochromIdAE) . 47 kaníckovití (GRAmmatidAE) . 50 trnovkovití (PLESIOPIdAE) . 50 štíhlounkovití (NotograptidAE) . 50 STUdnařovití (OpistogathidAE) . 50 kotějkovití (dINOPERCIdAE) . 51 OSmipruhovití (BANJOSIdAE) . 51 okounkovití (CENTRARCHIdAE) . 51 okounovití (PERCIdAE) . 52 OČAřovití (PriacanthidAE) . 56 parmovcovití (APOGONIdAE) . 56 JEždíkovcovití (SillaginidAE) . 62 štíhlicovití (MallacanthidAE) . 62 Bělivkovití (LactariidAE) . 63 štikulenkovití (dINOLESTIdAE) . 63 žravcovití (SCOmbropidAE) . 63 LUfarovití (POmatomIdAE) . 63 kohoutovcovití (NEmatistiidAE) . 63 zlakovití (CoryphaenidAE) . 63 kranasovcovití (RachycentridAE) . 63 štítovcovití (ECHENEIdAE) . 63 kranasovití (CARANGIdAE) . 64 měsícovcovití (mENIdAE) . 66 PLOšákovití (LeiognathidAE) . 66 PRAžmovití (BRAmIdAE) . 67 4 Ryby_7.indd 4 9.11.2011 13:52:18 placulinkovití (CARISTIIdAE) . 68 BEzzubkovití (EmmELICHTHYIdAE) . 68 CHňapalovití (LutjanidAE) . 68 CHňapálkovití (CAESIONIdAE) . 70 PILOHřbetcovití (LobotidAE) . 70 OSTNUšíčkovití (GERREIdAE) . 70 chrochtalovití (HAEmULIdAE) . 71 špičatníkovití (NEmIPTERIdAE) . 74 pichulovití (INERmIIdAE) . 75 cejnovkovití (LETHRINIdAE) . 75 mOřanovití (SparidAE) . 75 Smuhovkovití (CentracanthidAE) . 78 Smuhovcovití (PolynemIdAE) . 78 Smuhovití (SCIAENIdAE) . 79 parmicovití (mULLIdAE) . 83 metaříkovití (PEmPHERIdAE) . 85 perlovcovití (GlaucosomatidAE) . 85 POBřEžníkovití (LeptobramIdAE) . 85 BEztrníkovití (BathyclupeidAE) . 85 okatcovití (mONOdactylidAE) . 85 STříkounovití (TOxotidAE) . 85 kahavajovití (ARRIPIdAE) . 86 dOmbovití (dISTICHIIdAE) . 86 TLOUšťovkovití (KYPHOSIdAE) . 86 lesklecovití (DrepaneidAE) . 87 klipkovití (ChaetodONTIdAE) . 87 POmcovití (POmacanthidAE) . 89 TRNOHřbetovití (ENOPLOSIdAE) . 91 kostlivkovití (PentacerotidAE) . 91 ostnáčovití (NANdIdAE) . 91 ostnáčovití (PolycentridAE) . 91 bručounovití (TERAPONTIdAE) . 91 praporkovcovití (KUHLIIdAE) . 92 HRANOzubovití (OplegnathidAE) . 93 5 Ryby_7.indd 5 9.11.2011 13:52:18 šTětičkovcovití (CIRRHITIdAE) . 93 chironemovití (ChironemIdAE) . 93 mRAmorovkovití (APLOdactylidAE) . 93 morvongovití (CHEILOdactylidAE) . 93 trumpetníkovití (LatridAE) . 94 gospicovití (CEPOLIdAE) . 94 Ryby_7.indd 6 9.11.2011 13:52:19 Úvod Sedmý díl edice Českého názvosloví živočichů věnovaný rybám obsahuje řád ropušni- cotvarých (Scorpaeniformes) a část řádu ostnoploutvých (Perciformes, podřád Percoidei) dle NelsoNa (2006), zachováno bylo i pořadí jednotlivých čeledí. Tento díl obsahuje celkem 107 čeledí (26 z řádu ropušnicotvarých a 81 z řádu ostnoploutvých) zahrnujících dohromady 4918 druhů. Taxonomie jednotlivých druhů vychází především z kombinace pramenů Froeseho & Paulyho (2011) a eschmeyera & Frickeho (2011). Systém použitý v této publikaci odpovídá monografii NelsoNa (2006). způsob zařazování druhů do přehledu, princip používání českých názvů a českých i vědeckých synonym a transkripce autorů popisů jsou obdobné jako v předchozích dílech (haNel & Novák 2000, 2001, 2002, 2004, 2009). Poddruhy považujeme za problematickou taxonomickou jednotku, takže pro účely této publikace jsou všechny poddruhy kvalifikovány jako druhy. NelsoN (2006) do čeledi Nandidae řadí rody Pristolepis, Badis, Nandus, v čeledi Polycentridae rody Polycentrus, Monocirrhus, Afronandus, Polycentropsis. S odkazem na některé další prameny uvádí, že současné zařazení rodů v uvedených čeledích je pro- vizorní, a proto i námi uvedené české názvosloví nelze považovat za stabilní. S ohledem na již zavedené české názvy ponecháváme pro obě čeledi název ostnáčovití a pro všechny uvedené rody český název ostnáč. Rod Parabembras je řazen do čeledi Bembridae v souladu s NelsoNem (2006). Některými autory akceptované čeledi Apistidae, Sebastidae, Setarchidae a Tetrarogidae jsou v soula- du se systémem NelsoNa (2006) zařazeny v této monografii jako podčeledi v rámci čeledi Scorpaenidae. druh Eschmeyer nexus je zařazen do čeledi Aploactinidae (viz Nelson 2006). za cenné připomínky k textu, doplňky a upozornění na chyby a nepřesnosti děkujeme RNdr. Jaroslavu Hofmannovi. Naše upřímné poděkování patří Vladimíru Vyskočilovi z DTP KORšACH za pečivé provedení počítačových úprav celého textu. doufáme, že i tento díl názvosloví bude široce využíván stejně jako díly předcházející nejen odbornou veřejností, ale i dalšími zájemci o světovou rybí faunu. autoři 7 Ryby_7.indd 7 9.11.2011 13:52:19 Ryby_7.indd 8 9.11.2011 13:52:19 ROPUŠNICOTVAŘÍ – SCORPAENIFORMES řád: ROPUŠNICOTVAŘÍ – SCORPAENIFORMES (26 čeledí, 1570 druhů) Čeleď: letuchovití (dactylopteridae) (7 druhů) Dactyloptena gilberti Snyder, 1909 letucha Gilbertova Dactyloptena macracantha (Bleeker, 1854) letucha skvrnoploutvá Dactyloptena orientalis (Cuvier, 1829) letucha východní Dactyloptena papilio Ogilby, 1910 letucha motýlovitá Dactyloptena peterseni (Nyström, 1887) letucha Petersenova Dactyloptena tiltoni Eschmeyer, 1997 letucha Tiltonova Dactylopterus volitans (Linnaeus, 1758) letucha středomořská kohout mořský letucha evropská Čeleď: ropušnicovití (Scorpaenidae) (442 druhů) Ablabys binotatus (Peters, 1855) ropušnička stlačená Ablabys macracanthus (Bleeker, 1852) ropušnička trnitá Ablabys taenianotus (Cuvier, 1829) ropušnička kolébavá napoleon pruhovaný ropušnice kolébavá Adelosebastes latens Eschmeyer, Abe & Nakano, 1979 okouník císařský Apistops caloundra (de Vis, 1886) ropušníček šelfový Apistus carinatus (Bloch & Schneider, 1801) ropušníček hřbetoskvrnný Brachypterois serrulata (Richardson, 1846) ropušnice pilovitá Centropogon australis (White, 1790) ropušnička širokopruhá Centropogon latifrons mees, 1962 ropušnička širokočelá Centropogon marmoratus Günther, 1862 ropušnička mramorovaná Coccotropsis gymnoderma (Gilchrist, 1906) ropušnička jihoafrická Cottapistus cottoides (Linnaeus, 1758) ropušnička vrankovitá Dampierosa daruma (Whitley, 1932) odranec západoaustralský Dendrochirus barberi (Steindachner, 1900) perutýn maskovaný Dendrochirus bellus (Jordan & Hubbs, 1925) perutýn pohledný perutýn pruhovaný Dendrochirus biocellatus (fowler, 1938) perutýn očkatý Dendrochirus brachypterus (Cuvier, 1829) perutýn krátkoploutvý Dendrochirus zebra (Cuvier, 1829) perutýn zebrovitý Ebosia bleekeri (döderlein, 1884) ebosie Bleekerova Ebosia falcata Eschmeyer & Rama-Rao, 1978 ebosie srpovitá Ectreposebastes imus Garman, 1899 paropušník temný Ectreposebastes niger (fourmanoir, 1971) paropušník černý Erosa erosa (Cuvier, 1829) odranec záhadný Glyptauchen panduratus (Richardson, 1850) ropušnička podivná Gymnapistes marmoratus (Cuvier, 1829) ropušnička jihoaustralská Helicolenus avius Abe & Eschmeyer, 1972 okouník vzácný Helicolenus barathri (Hector, 1875) okouník okatý Helicolenus dactylopterus (delaroche, 1809) okouník modroústý okouník skvrnitý Helicolenus fedorovi Barsukov, 1973 okouník Fedorovův Helicolenus hilgendorfii (döderlein, 1884) okouník Hilgendorfův Helicolenus
Recommended publications
  • East Coast of North America Groundfish: Initial Explorations of Biogeography and Species Assemblages
    East Coast of North America Strategic Assessment Project Partitioning the Total Mortality DFO r~I'j~ffm~niii~rlieqUe 10020258 of Atlantic Cod Stocks Project East Coast of North America Groundfish: Initial Explorations of Biogeography and Species Assemblages o Department of Fisheries and Oceans, Canada and National Oceanic and Atmospheric Administration, USA SH 213.5 August 1996 .E17 1996 c.2 About the East Coast of North America Strategic Assessment Project The East Coast of North America Strategic Assessment Project (ECNASAP) was initiated in the USA by NOAA's Strategic Environmental Assessments (SEA) Division to develop information and analytical resources for sup­ porting integrated management of large portions of the region's coastal ocean. The ECNASAP Pilot Project consists of inshore and offshore case studies, and is a cooperative effort among several U.S. and Canadian agencies. Digital map and data products are being developed in the Offshore Case Study for groundfish, seabirds, temperature, salinity, and sediments. This report summarizes the initial results for the groundfish component. About Partitioning the Total Mortality of Atlantic Cod Stocks Project In 1995, Canada's Department of Fisheries and Oceans (DFO) initiated a series of research projects to address high priority issues for the Atlantic and Pacific coasts. The Cod Mortality Project is a component of this effort; its objective is to assess the main causes for the decline of cod resources since the mid-1980s. A subproject is to examine long-term changes in groundfish assemblages on a biogeographic scale, and to determine whether or not these changes coincided with changes in ocean climate.
    [Show full text]
  • Ctenoides Ales) Lindsey F
    © 2017. Published by The Company of Biologists Ltd | Biology Open (2017) 6, 648-653 doi:10.1242/bio.024570 RESEARCH ARTICLE Do you see what I see? Optical morphology and visual capability of ‘disco’ clams (Ctenoides ales) Lindsey F. Dougherty1,2,3,*, Richard R. Dubielzig4, Charles S. Schobert4, Leandro B. Teixeira4 and Jingchun Li2,3 ABSTRACT considering the evolution of vision, simple light-sensitive cells can The ‘disco’ clam Ctenoides ales (Finlay, 1927) is a marine bivalve that evolve to a complex camera-type eye in a mere few hundred has a unique, vivid flashing display that is a result of light scattering by thousand years (Nilsson and Pelger, 1994), which may explain the silica nanospheres and rapid mantle movement. The eyes of C. ales extreme diversity of vision throughout the animal kingdom. were examined to determine their visual capabilities and whether the Mollusks (bivalves, gastropods, cephalopods, chitons, etc.) have clams can see the flashing of conspecifics. Similar to the congener the most diverse eye morphologies of any phylum (Serb and C. scaber, C. ales exhibits an off-response (shadow reflex) and an on- Eernisse, 2008). Several eye types have evolved within Mollusca: response (light reflex). In field observations, a shadow caused a pit eyes can differentiate between light and shade but do not form significant increase in flash rate from a mean of 3.9 Hz to 4.7 Hz images, and exist in some bivalves and gastropods; pinhole eyes, (P=0.0016). In laboratory trials, a looming stimulus, which increased which provide the directionality of light but poor image quality, light intensity, caused a significant increase in flash rate from a exist in the nautilus and the giant clam; compound eyes, which have median of 1.8 Hz to 2.2 Hz (P=0.0001).
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Southward Range Extension of the Goldeye Rockfish, Sebastes
    Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al.
    [Show full text]
  • Historical Fish Specimens Collected from the Tohoku District by the Saito Ho-On Kai Museum of Natural History
    Bull. Natl. Mus. Nat. Sci., Ser. A, 35(1), pp. 9–54, March 22, 2009 Historical Fish Specimens Collected from the Tohoku District by the Saito Ho-on Kai Museum of Natural History Keiichi Matsuura1, Gento Shinohara2 and Masanori Nakae1 1 Collection Center, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected]; [email protected] 2 Department of Zoology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected] Abstract The fish collection of the Saito Ho-on Kai Museum of Natural History was transferred to the National Museum of Nature and Science, Tokyo in February 2006. Ninety percent of the fish collection contains specimens collected from the Tohoku District during the period from 1930 to 1933 when natural environments of Japan were in good condition for various groups of fishes. The fish specimens from the Tohoku District were classified into 361 species/subspecies of 273 genera belonging to 131 families of 31 orders. A list of the species is shown with remarks on distribution. Key words: Fish specimens, Saito Ho-on Kai Museum, Tohoku District, inventory. stead of natural sicence. The museum has tried to Introduction keep its activity at the level before the war, but it The Saito Ho-on Kai Museum was established failed to do so because of financial difficulties. In in November 1933 in Sendai City, Miyagi Pre- 2005, the Saito Ho-on Kai Museum of Natural fecture, Japan.
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Multiscale Habitat Suitability Modeling for Canary Rockfish
    MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST By Portia Naomi Saucedo A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental and Natural Resource Sciences Committee Membership Dr. Jim Graham, Committee Chair Dr. Brian Tissot, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Alison Purcell O’Dowd, Graduate Coordinator July 2017 ABSTRACT MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST Portia N. Saucedo Detailed spatially-explicit data of the potential habitat of commercially important rockfish species are a critical component for the purposes of marine conservation, evaluation, and planning. Predictive habitat modeling techniques are widely used to identify suitable habitat in un-surveyed regions. This study elucidates the predicted distribution of canary rockfish (Sebastes pinniger) along the largely un-surveyed northern California coast using data from visual underwater surveys and predictive terrain complexity covariates. I used Maximum Entropy (MaxEnt) modelling software to identify regions of suitable habitat for S. pinniger greater than nine cm in total length at two spatial scales. The results of this study indicate the most important environmental covariate was proximity to the interface between hard and soft substrate. I also examined the predicted probability of presence for each model run. MaxEnt spatial predictions varied in predicted probability for broad-scale and each of the fine-scale regions. Uncertainty in predictions was considered at several levels and spatial uncertainty was quantified and mapped. The predictive modeling efforts allowed spatial predictions outside the sampled area at both the broad- and fine-scales accessed.
    [Show full text]
  • Fishes Collected During the 2017 Marinegeo Assessment of Kāne
    Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.
    [Show full text]
  • Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes 2 Aaron N. Rice1*, Stacy C. Farina2, Andrea J. Makowski3, Ingrid M. Kaatz4, Philip S. Lobel5, 3 William E. Bemis6, Andrew H. Bass3* 4 5 1. Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 6 Sapsucker Woods Road, Ithaca, NY, USA 7 2. Department of Biology, Howard University, 415 College St NW, Washington, DC, USA 8 3. Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 9 USA 10 4. Stamford, CT, USA 11 5. Department of Biology, Boston University, 5 Cummington Street, Boston, MA, USA 12 6. Department of Ecology and Evolutionary Biology and Cornell University Museum of 13 Vertebrates, Cornell University, 215 Tower Road, Ithaca, NY, USA 14 15 ORCID Numbers: 16 ANR: 0000-0002-8598-9705 17 SCF: 0000-0003-2479-1268 18 WEB: 0000-0002-5669-2793 19 AHB: 0000-0002-0182-6715 20 21 *Authors for Correspondence 22 ANR: [email protected]; AHB: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Check List of Fishes of the Gulf of Mannar Ecosystem, Tamil Nadu, India
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2016.58.1.1895-05 Check list of fishes of the Gulf of Mannar ecosystem, Tamil Nadu, India K. K. Joshi*, Miriam Paul Sreeram, P. U. Zacharia, E. M. Abdussamad, Molly Varghese, O. M. M. J. Mohammed Habeeb1, K. Jayabalan1, K. P. Kanthan1, K. Kannan1, K. M. Sreekumar, Gimy George and M. S. Varsha ICAR-Central Marine Fisheries Research Institute, P. B. No.1603, Kochi - 682 018, Kerala, India. 1Tuticorin Research Centre of Central Marine Fisheries Research Institute, Tuticorin - 628 001, Tamil Nadu, India. *Correspondence e-mail: [email protected] Received: 10 Jan 2016, Accepted: 25 Jun 2016, Published: 30 Jun 2016 Original Article Abstract Introduction Gulf of Mannar Ecosystem (GOME) covers an area spread over Rameswaram and Kanyakumari for about 19000 km2 and lies between India is blessed with a vast region of coral reefs and 78°11’E and 79°15’ E longitude and 8°49’N and 9°15’N latitude. The mangroves and these regions support very rich fauna of flora 21 coral islands form a network of habitats for different kinds of fishes and constitute rich biodiversity of marine organisms. Gulf and marine organisms. Fish samples were collected during April 2005 of Mannar Ecosystem (GOME) covers an area spread over to March 2010 from different centers viz., Vembar, Tharuvaikulam, Rameswaram and Kanyakumari to about 19,000 km2. GOME Vellapatti, Therespuram, Tuticorin, Alangarathattu, Pazhaykayal, lies between 78°11’00” E and 79°15’00” E longitude and Punnakayal, Kayalpattinam, Veerapandiapattinam, Thiruchendur and 8°49’00” N and 9°15’00” N latitude.
    [Show full text]