Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iaea International Fact Finding Expert Mission of the Fukushima Dai-Ichi Npp Accident Following the Great East Japan Earthquake and Tsunami
IAEA Original English MISSION REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI Tokyo, Fukushima Dai-ichi NPP, Fukushima Dai-ni NPP and Tokai Dai-ni NPP, Japan 24 May – 2 June 2011 IAEA MISSION REPORT DIVISION OF NUCLEAR INSTALLATION SAFETY DEPARTMENT OF NUCLEAR SAFETY AND SECURITY IAEA Original English IAEA REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI REPORT TO THE IAEA MEMBER STATES Tokyo, Fukushima Dai-ichi NPP, Fukushima Dai-ni NPP and Tokai Dai-ni NPP, Japan 24 May – 2 June 2011 i IAEA ii IAEA REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI Mission date: 24 May – 2 June 2011 Location: Tokyo, Fukushima Dai-ichi, Fukushima Dai-ni and Tokai Dai-ni, Japan Facility: Fukushima and Tokai nuclear power plants Organized by: International Atomic Energy Agency (IAEA) IAEA Review Team: WEIGHTMAN, Michael HSE, UK, Team Leader JAMET, Philippe ASN, France, Deputy Team Leader LYONS, James E. IAEA, NSNI, Director SAMADDAR, Sujit IAEA, NSNI, Head, ISCC CHAI, Guohan People‘s Republic of China CHANDE, S. K. AERB, India GODOY, Antonio Argentina GORYACHEV, A. NIIAR, Russian Federation GUERPINAR, Aybars Turkey LENTIJO, Juan Carlos CSN, Spain LUX, Ivan HAEA, Hungary SUMARGO, Dedik E. BAPETEN, Indonesia iii IAEA SUNG, Key Yong KINS, Republic of Korea UHLE, Jennifer USNRC, USA BRADLEY, Edward E. -
Greetingsfrom Koriyama City
‘Nunobiki Plateau Wind Farm’: boasting 33 wind turbines with the height of roughly 100 meters, one of the largest scale wind farms in Japan Greetings from Koriyama City -Toward a future-oriented and mutually-beneficial relationship between the cities of Essen and Koriyama- Business Creation Division City of Koriyama, JAPAN City of Koriyama, Fukushima Prefecture JAPAN 1 Geographical Features of Koriyama City -Two Cities of Essen and Koriyama- 2nd most populous in Fukushima Prefecture and 3rd most populous in Tohoku Region ‘Economic Capital City in Fukushima Prefecture’, boasting its Essen City biggest retail sales and largest number of retail businesses in the prefecture Largest number of agricultural households in Fukushima State of North Rhine- Prefecture, boasting biggest rice production in the prefecture Westphalia 51 Degrees 37 Degrees Koriyama City Fukushima Prefecture Koriyama City Central urban area of Koriyama City (the west exit of Koriyama Station) City of Koriyama, Fukushima Prefecture JAPAN 2 History of the Development of Koriyama City -Transition from a city of power generation to city of renewable energy and medical devices- 5.Great East Japan 6.Restoration Earthquake and Nuclear Accident from the disasters, at Fukushima Daiichi Nuclear promoting renewable Power Station in 2011 energy and medical device development Oyasuba Burial Mound, built in the Fukushima Renewable Energy early Kofun Period (250 AD-538 AD) Institute, AIST (FREA) opened in April 2014 Building with its first floor collapsed due to the fierce earthquake 4.People gathered, schools and banks established, Fukushima Medical Device Development Numagami Hydroelectric Power Station, laid Support Center (FMDDSC) the foundation of Koriyama’s development railroaded to become the center of Fukushima Prefecture opened in November 2016 3.New industry revolution, cotton and chemical industries flourished by hydro electric power generation, Hodogaya Chemical Co., LTD. -
The Fukushima Nuclear Accident and Crisis Management
e Fukushima Nuclearand Crisis Accident Management e Fukushima The Fukushima Nuclear Accident and Crisis Management — Lessons for Japan-U.S. Alliance Cooperation — — Lessons for Japan-U.S. Alliance Cooperation — — Lessons for Japan-U.S. September, 2012 e Sasakawa Peace Foundation Foreword This report is the culmination of a research project titled ”Assessment: Japan-US Response to the Fukushima Crisis,” which the Sasakawa Peace Foundation launched in July 2011. The accident at the Fukushima Daiichi Nuclear Power Plant that resulted from the Great East Japan Earthquake of March 11, 2011, involved the dispersion and spread of radioactive materials, and thus from both the political and economic perspectives, the accident became not only an issue for Japan itself but also an issue requiring international crisis management. Because nuclear plants can become the target of nuclear terrorism, problems related to such facilities are directly connected to security issues. However, the policymaking of the Japanese government and Japan-US coordination in response to the Fukushima crisis was not implemented smoothly. This research project was premised upon the belief that it is extremely important for the future of the Japan-US relationship to draw lessons from the recent crisis and use that to deepen bilateral cooperation. The objective of this project was thus to review and analyze the lessons that can be drawn from US and Japanese responses to the accident at the Fukushima Daiichi Nuclear Power Plant, and on the basis of these assessments, to contribute to enhancing the Japan-US alliance’s nuclear crisis management capabilities, including its ability to respond to nuclear terrorism. -
Paper Sludge Carbon As an Adsorbent for Fukushima Radiocontaminated Paddy Soil
applied sciences Article Paper Sludge Carbon as an Adsorbent for Fukushima Radiocontaminated Paddy Soil Ai Van Tran 1,* and Makoto Yanaga 2 1 Corelex SanEi Co. Ltd., Agoyama 775-1, Shizuoka Prefecture, Fujinomiya City 418-0037, Japan 2 Center for Radioscience Education and Research, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka City 422-8529, Japan; [email protected]; Tel.: +81-54-238-4804 * Correspondence: [email protected]; Tel.: +81-544-23-0303 Received: 28 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: Radiocontaminated soil in a paddy field in the Iitate village in Fukushima was treated with an industrial paper sludge carbon (PSC) prior to growing rice in May 2011. The results showed that the sum of the activity concentrations of 134Cs and 137Cs in the polished rice harvested in October 2011 was 30 Bq kg 1, a level much lower than the Japanese governmental safeguard value of 100 Bq kg 1. · − · − Upon contacting with the contaminated soil, the contents of calcium, magnesium, copper, potassium, and barium in the PSC were decreased. Among the PSCs impregnated with various chlorides and sulfates of the previously mentioned minerals, potassium chloride, copper sulfate, magnesium sulfate, and potassium sulfate yielded higher decontamination degrees compared to the original PSC. The results imply that radioactive cesium in the soil exchanges cations with these minerals. Keywords: paper sludge carbon; decontamination; rice; ion exchange; 134Cs; 137Cs 1. Introduction As the radiocontaminated soil from the Chernobyl nuclear power plant accident in 1986 is concerned, Guillitte and co-workers [1] proposed countermeasures such as the removal of contaminated surface soil, spraying contaminated canopies with detergents or cleaning agents, defoliation and removal of fallen leaves, as well as plowing after clear felling and prior to planting. -
March 2011 Earthquake, Tsunami and Fukushima Nuclear Accident Impacts on Japanese Agri-Food Sector
Munich Personal RePEc Archive March 2011 earthquake, tsunami and Fukushima nuclear accident impacts on Japanese agri-food sector Bachev, Hrabrin January 2015 Online at https://mpra.ub.uni-muenchen.de/61499/ MPRA Paper No. 61499, posted 21 Jan 2015 14:37 UTC March 2011 earthquake, tsunami and Fukushima nuclear accident impacts on Japanese agri-food sector Hrabrin Bachev1 I. Introduction On March 11, 2011 the strongest recorded in Japan earthquake off the Pacific coast of North-east of the country occurred (also know as Great East Japan Earthquake, 2011 Tohoku earthquake, and the 3.11 Earthquake) which triggered a powerful tsunami and caused a nuclear accident in one of the world’s largest nuclear plant (Fukushima Daichi Nuclear Plant Station). It was the first disaster that included an earthquake, a tsunami, and a nuclear power plant accident. The 2011 disasters have had immense impacts on people life, health and property, social infrastructure and economy, natural and institutional environment, etc. in North-eastern Japan and beyond [Abe, 2014; Al-Badri and Berends, 2013; Biodiversity Center of Japan, 2013; Britannica, 2014; Buesseler, 2014; FNAIC, 2013; Fujita et al., 2012; IAEA, 2011; IBRD, 2012; Kontar et al., 2014; NIRA, 2013; TEPCO, 2012; UNEP, 2012; Vervaeck and Daniell, 2012; Umeda, 2013; WHO, 2013; WWF, 2013]. We have done an assessment of major social, economic and environmental impacts of the triple disaster in another publication [Bachev, 2014]. There have been numerous publications on diverse impacts of the 2011 disasters including on the Japanese agriculture and food sector [Bachev and Ito, 2013; JA-ZENCHU, 2011; Johnson, 2011; Hamada and Ogino, 2012; MAFF, 2012; Koyama, 2013; Sekizawa, 2013; Pushpalal et al., 2013; Liou et al., 2012; Murayama, 2012; MHLW, 2013; Nakanishi and Tanoi, 2013; Oka, 2012; Ujiie, 2012; Yasunaria et al., 2011; Watanabe A., 2011; Watanabe N., 2013]. -
COVID-19: Make It the Last Pandemic
COVID-19: Make it the Last Pandemic Disclaimer: The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Independent Panel for Pandemic Preparedness and Response concerning the legal status of any country, territory, city of area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Report Design: Michelle Hopgood, Toronto, Canada Icon Illustrator: Janet McLeod Wortel Maps: Taylor Blake COVID-19: Make it the Last Pandemic by The Independent Panel for Pandemic Preparedness & Response 2 of 86 Contents Preface 4 Abbreviations 6 1. Introduction 8 2. The devastating reality of the COVID-19 pandemic 10 3. The Panel’s call for immediate actions to stop the COVID-19 pandemic 12 4. What happened, what we’ve learned and what needs to change 15 4.1 Before the pandemic — the failure to take preparation seriously 15 4.2 A virus moving faster than the surveillance and alert system 21 4.2.1 The first reported cases 22 4.2.2 The declaration of a public health emergency of international concern 24 4.2.3 Two worlds at different speeds 26 4.3 Early responses lacked urgency and effectiveness 28 4.3.1 Successful countries were proactive, unsuccessful ones denied and delayed 31 4.3.2 The crisis in supplies 33 4.3.3 Lessons to be learnt from the early response 36 4.4 The failure to sustain the response in the face of the crisis 38 4.4.1 National health systems under enormous stress 38 4.4.2 Jobs at risk 38 4.4.3 Vaccine nationalism 41 5. -
(CRSI) Steering Committee Final Report — a Roadmap to Increased Community Resilience
Community Resilience System Initiative (CRSI) Steering Committee Final Report — a Roadmap to Increased Community Resilience August 2011 CRSI Community Resilience System Initiative Community Resilience System Initiative (CRSI) Steering Committee Final Report — a Roadmap to Increased Community Resilience August 2011 Developed and Convened by the This material is based upon work supported by the U.S. Department of Homeland Security under U.S. Department of Energy Interagency Agreement 43WT10301. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. Community Resilience System Initiative Final Report • August 2011 CONTENTS ACKNOWLEDGMENTS .......................................................................................................................... v EXECUTIVE SUMMARY ....................................................................................................................... vii I. INTRODUCTION .............................................................................................................................. 1 Community Resilience in Action ..................................................................................................... 2 Message from the Community Resilience System Initiative Steering Committee Chair ....................................................................................................................... -
Fukushima Daiichi 2011-2021 the Decontamination Myth and a Decade of Human Rights Violations
Fukushima Daiichi 2011-2021 The decontamination myth and a decade of human rights violations March 2021 01 Contents Executive summary 1 The reality of contamination in Fukushima 2 The decontamination myth 3 Greenpeace surveys 4 Areas where evacuation orders have been lifted – Iitate and Namie 5 Iitate district 6 Namie town and district 7 Namie ‘difficult-to-return’ exclusion zone 8 Strontium-90 – an additional threat 9 Ten years of evacuation, displacement and human rights violations 10 The future of difficult-to-return exclusion zones 11 Conclusion and recommendations Endnotes Cover: Nuclear waste storage area in Iitate, Fukushima prefecture. (October 1, 2017) Page 2-3: Greenpeace survey team in Namie, Fukushima prefecture. (March 26, 2011) © Christian Åslund / Greenpeace 02 Acknowledgements Radiation survey team 2020 Report team 2021 Coordinator and Lead Radiation Protection: Survey data compilation: Jan Vande Putte, Greenpeace Belgium Mai Suzuki, Greenpeace Japan and Mai Suzuki, Greenpeace Japan Researcher: Daisuke Miyachi, Greenpeace Japan Report and analysis : Shaun Burnie, Greenpeace East Asia; Technical support: Jan Vande Putte, Greenpeace Jan vande Putte, Greenpeace Belgium; and Heinz Smital, Belgium and Heinz Smital, Greenpeace Germany Greenpeace Germany Communication/photography support: Review and Editing: Dr Rianne Teule (Greenpeace RPA Mitsuhisa Kawase, Greenpeace Japan coordinator); Kazue Suzuki, Greenpeace Japan; Insung Lee, Greenpeace East Asia; Caroline Roberts Survey teams 2011-2020 Photographs: Christian Aslund; Shaun -
Accident Knowledge and Emergency Management
Ris0-R-945(EN) DK9700056 Accident Knowledge and Emergency Management Birgitte Rasmussen, Carsten D. Gr0nberg Ris0 National Laboratory, Roskilde, Denmark March 1997 VOL 2 p III 1 2 Accident Knowledge and Emergency Management Birgitte Rasmussen, Carsten D. Gr0nberg Ris0 National Laboratory, Roskilde, Denmark March 1997 Abstract. The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential ele- ments are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of con- finement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. The work described in this report is financially supported by EUREKA MEM- brain (Major Emergency Management) project running 1993-1998. -
Remote Sensing Applications: Society and Environment 1 (2015) 72–84
Remote Sensing Applications: Society and Environment 1 (2015) 72–84 Contents lists available at ScienceDirect Remote Sensing Applications: Society and Environment journal homepage: www.elsevier.com/locate/rsase Current situation and needs in man-made and natech risks management using Earth Observation techniques Sabina Di Franco n, Rosamaria Salvatori IIA – CNR, Rome, Italy article info abstract Article history: Received 23 March 2015 The Earth Observation (EO) techniques are becoming increasingly important in risk man- Received in revised form agement activities not only for natural hazards and natural disaster monitoring but also to 9 June 2015 ride out industrial and natech accidents. The latest developments in the aerospace industry Accepted 10 June 2015 Available online 29 July 2015 such as sensors miniaturization and high spatial and temporal resolution missions, devoted to monitoring areas of specific interest, have made the use of EO techniques more efficiently and Keywords: arevreadytobeusedinnearrealtimeconditions.Thispapersummarizethecurrentstateof Natech knowledge on how EO data can be useful in managing all the phases of the Industrial/natech Man-made hazards disaster, and from the environmental conditions before the accident strikes to the post Industrial accident Risk management accident relief, from the scenario setting and planning stage to the damage assessment. Preparedness & 2015 Elsevier B.V. All rights reserved. Emergency Recovery Small satellite UAV Contents 1. Introduction . 73 2. State of the art of the use of EO for industrial and natech risk management . 74 2.1. Explosions....................................................................................... 76 2.2. Fire............................................................................................. 76 2.3. Nuclear accidents. 78 2.4. Oilspills......................................................................................... 80 3. Future development . 80 3.1. Small satellites. 81 3.2. -
New Stage Towards Reconstruction & Revitalization
Eliminating Negative Reputation Impact ~ Reconstruction from Nuclear Disaster & the History of Safety and Revitalization of Fukushima ~ April, 2020 New Stage towards Reconstruction & Revitalization Status of the Areas under Evacuation Order in Fukushima ○Dimension of areas under evacuation order is about 2.4% of the whole prefecture (about 0.09% of Japan’s total land area). ○People in 97.6% of the prefecture can live a normal life. Areas under Evacuation Order (notes) Areas where returning is difficult(No entry in principle, No overnight stays) Source: Fukushima Prefectural website Approx. 133km TEPCO Fukushima Daiichi Nuclear Power Station Approx. 166km Source: Created by the Reconstruction Agency based on materials from Fukushima Prefecture and the Support Team for Residents Affected by Nuclear Incidents Changes in Air Dose Rate ○The average air dose rate*1 within 80km from TEPCO Fukushima Daiichi Nuclear Power Station decreased by about 78%*2 compared to levels in November 2011. Legend Air dose rates at 1m in height from the ground surface (μSv/h) (ex.)The air dose rate in Fukushima city is now lower than 1/20 of what it was immediately after the Great East Japan Earthquake in 2011 Range where Great East Japan measurement results were not obtained Earthquake November 2011 Most recent data: http://radioactivity.nsr.go.jp/en/ September 2019 *1Measured at 1m in height from the ground surface Changes in Air Dose Rate(Fukushima city) *2The target area is divided into 250-m grid meshes and the value is calculated from the ratio of the measurement results in the central point of each grid mesh. -
Tomography of the 2011 Iwaki Earthquake (M 7.0) and Fukushima Nuclear Power Plant Area
Solid Earth, 3, 43–51, 2012 www.solid-earth.net/3/43/2012/ Solid Earth doi:10.5194/se-3-43-2012 © Author(s) 2012. CC Attribution 3.0 License. Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima nuclear power plant area P. Tong1,2, D. Zhao1, and D. Yang2 1Department of Geophysics, Tohoku University, Sendai 980-8578, Japan 2Department of Mathematical Sciences, Tsinghua University, Beijing, China Correspondence to: P. Tong ([email protected]), D. Zhao ([email protected]) Received: 12 December 2011 – Published in Solid Earth Discuss.: 22 December 2011 Revised: 2 February 2012 – Accepted: 6 February 2012 – Published: 14 February 2012 Abstract. High-resolution tomographic images of the crust zone but also in regions far away from the epicenter, and so and upper mantle in and around the area of the 2011 Iwaki the seismic activity in the crust of the overriding plate west of earthquake (M 7.0) and the Fukushima nuclear power plant the source area has increased significantly after the Tohoku- are determined by inverting a large number of high-quality oki mainshock that ruptured the megathrust zone beneath the arrival times with both the finite-frequency and ray tomog- Pacific Ocean (Okada et al., 2011). raphy methods. The Iwaki earthquake and its aftershocks The Iwaki earthquake (M 7.0) occurred in a previous seis- mainly occurred in a boundary zone with strong variations micity gap on 11 April 2011 and it was one of the ma- in seismic velocity and Poisson’s ratio. Prominent low- jor aftershocks following the Tohoku-oki mainshock and the velocity and high Poisson’s ratio zones are revealed under the strongest one hit the Japan land area.