Field Guide to Forest Plants of Northern Idaho
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adaptive Radiations: from Field to Genomic Studies
Adaptive radiations: From field to genomic studies Scott A. Hodges and Nathan J. Derieg1 Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 Adaptive radiations were central to Darwin’s formation of his phenotype–environment correlation, (iii) trait utility, and (iv) theory of natural selection, and today they are still the centerpiece rapid speciation. Monophyly and rapid speciation for many of for many studies of adaptation and speciation. Here, we review the the classic examples of adaptive radiation have been established advantages of adaptive radiations, especially recent ones, for by using molecular techniques [e.g., cichlids (4), Galapagos detecting evolutionary trends and the genetic dissection of adap- finches (5, 6), and Hawaiian silverswords (7)]. Ecological and tive traits. We focus on Aquilegia as a primary example of these manipulative experiments are used to identify and test pheno- advantages and highlight progress in understanding the genetic type–environmental correlations and trait utility. Ultimately, basis of flower color. Phylogenetic analysis of Aquilegia indicates such studies have pointed to the link between divergent natural that flower color transitions proceed by changes in the types of selection and reproductive isolation and, thus, speciation (3). anthocyanin pigments produced or their complete loss. Biochem- Studies of adaptive radiations have exploded during the last 20 ical, crossing, and gene expression studies have provided a wealth years. In a search of the ISI Web of Science with ‘‘adaptive of information about the genetic basis of these transitions in radiation’’ (limited to the subject area of evolutionary biology) Aquilegia. To obtain both enzymatic and regulatory candidate we found 80 articles published in 2008 compared with only 1 in genes for the entire flavonoid pathway, which produces antho- 1990. -
WRITTEN FINDINGS of the WASHINGTON STATE NOXIOUS WEED CONTROL BOARD 2018 Noxious Weed List Proposal
DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD 2018 Noxious Weed List Proposal Scientific Name: Tussilago farfara L. Synonyms: Cineraria farfara Bernh., Farfara radiata Gilib., Tussilago alpestris Hegetschw., Tussilago umbertina Borbás Common Name: European coltsfoot, coltsfoot, bullsfoot, coughwort, butterbur, horsehoof, foalswort, fieldhove, English tobacco, hallfoot Family: Asteraceae Legal Status: Proposed as a Class B noxious weed for 2018, to be designated for control throughout Washington, except for in Grant, Lincoln, Adams, Benton, and Franklin counties. Images: left, blooming flowerheads of Tussilago farfara, image by Caleb Slemmons, National Ecological Observatory Network, Bugwood.org; center, leaves of T. farfara growing with ferns, grasses and other groundcover species; right, mature seedheads of T. farfara before seeds have been dispersed, center and right images by Leslie J. Mehrhoff, University of Connecticut, Bugwood.org. Description and Variation: The common name of Tussilago farfara, coltsfoot, refers to the outline of the basal leaf being that of a colt’s footprint. Overall habit: Tussilago farfara is a rhizomatous perennial, growing up to 19.7 inches (50 cm tall), which can form extensive colonies. Plants first send up flowering stems in the spring, each with a single yellow flowerhead. Just before or after flowers have formed seeds, basal leaves on long petioles grow from the rhizomes, with somewhat roundish leaf blades that are more or less white-woolly on the undersides. Roots: Plants have long creeping, white scaly rhizomes (Griffiths 1994, Chen and Nordenstam 2011). Rhizomes are branching and have fibrous roots (Barkley 2006). They are also brittle and can break easily (Pfeiffer et al. -
Plant Species of Special Concern and Vascular Plant Flora of the National
Plant Species of Special Concern and Vascular Plant Flora of the National Elk Refuge Prepared for the US Fish and Wildlife Service National Elk Refuge By Walter Fertig Wyoming Natural Diversity Database The Nature Conservancy 1604 Grand Avenue Laramie, WY 82070 February 28, 1998 Acknowledgements I would like to thank the following individuals for their assistance with this project: Jim Ozenberger, ecologist with the Jackson Ranger District of Bridger-Teton National Forest, for guiding me in his canoe on Flat Creek and for providing aerial photographs and lodging; Jennifer Whipple, Yellowstone National Park botanist, for field assistance and help with field identification of rare Carex species; Dr. David Cooper of Colorado State University, for sharing field information from his 1994 studies; Dr. Ron Hartman and Ernie Nelson of the Rocky Mountain Herbarium, for providing access to unmounted collections by Michele Potkin and others from the National Elk Refuge; Dr. Anton Reznicek of the University of Michigan, for confirming the identification of several problematic Carex specimens; Dr. Robert Dorn for confirming the identification of several vegetative Salix specimens; and lastly Bruce Smith and the staff of the National Elk Refuge for providing funding and logistical support and for allowing me free rein to roam the refuge for plants. 2 Table of Contents Page Introduction . 6 Study Area . 6 Methods . 8 Results . 10 Vascular Plant Flora of the National Elk Refuge . 10 Plant Species of Special Concern . 10 Species Summaries . 23 Aster borealis . 24 Astragalus terminalis . 26 Carex buxbaumii . 28 Carex parryana var. parryana . 30 Carex sartwellii . 32 Carex scirpoidea var. scirpiformis . -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Tallgrass Prairie Center's Native Seed Production Manual
Bluejoint reedgrass Establishment for Seed Production (Appendix A) Direct seeding: Calamagrostis canadensis, (Michx.) NOT RECOMMENDED FOR THIS SPECIES Beauv. Greenhouse: Seed pre-treatment: No stratification necessary. Genus Calamagrostis, Greek Kalomos meaning ‘reed’ and Germination of grass seed usually improves with agrostis meaning ‘grass’; species canadensis Latin ‘of proper storage (cool, dry conditions) throughout Canada’. the first year after harvest. Sow seed in greenhouse two months before last frost free date at ¼” depth. Family: Grass (Poaceae) Transplant after all danger of frost. Greenhouse grown plugs can be transplanted into wide row Other Common Name(s): Bluejoint, Canada bluejoint, spacing, 6-8 feet between rows, and plants should be Canada reedgrass, marsh reedgrass, meadow pinegrass 1-2 feet apart within the rows. This gives the newly established plants adequate root-space for rhizome spread, and promotes more flowering and seed set Description: Native perennial cool-season grass, highly after establishment. Irrigate during establishment and rhizomatous. Flowering culms 3-5 feet tall, smooth stem. Leaf as needed for flowering and seed production. sheaths smooth with prominent veins. Leaf blades 3-8 mm (3/16-3/8 inch) wide, up to 30 cm (12 inches) long. Ligule is a membrane, about 3mm (1/8 inch) tall. Seedhead consists of 12 a loosely branched spikelike panicle, 10-20 cm (4-8 inches) 10 long. Flag leaf just below panicle is short and tends to stick out at a 90 degree angle from the stem. 8 Adaptation/Habitat: 6 Wet to wet-mesic soil conditions, bogs, marshes, 4 wet swales, along rivers Acre Pounds/ Yield 2 and streams. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Conservation of Eastern European Medicinal Plants Arnica Montana in Romania Management Plan
Conservation of Eastern European Medicinal Plants Arnica montana in Romania Case Study Gârda de Sus Management Plan Barbara Michler 2007 Projekt Leader: Dr. Susanne Schmitt, Dr. Wolfgang Kathe (maternity cover) WWF-UK Panda House, Weyside Park, Godalming, Surrey GU7 1XR, United Kingdom Administration: Michael Balzer and team WWF-DCP Mariahilfer-Str. 88a/3/9 A-1070 Wien Austria Projekt Manager: Maria Mihul WWF-DCP 61, Marastu Bdv. 3rd floor, 326/327/328 Sector 1, Bucharest, RO-71331 Romania With financial support of the Darwin Initiative Area 3D, Third Floor, Nobel House 17 Smith Square, London SW1P 3JR United Kingdom Project Officer: Dr. Barbara Michler Dr. Fischer, ifanos-Landschaftsökologie Forchheimer Weg 46 D-91341 Röttenbach Germany Local Coordinator: Dr. Florin Pacurar University of Agricultural Sciences and Veterinary Medicine (USAMV) Department of Fodder Production & Conservation Cluj-Napoca, Romania Major of the community Gârda de Sus Alba Iulia Romania Acknowledgements I am very grateful to a number of people who were involved in the process of the project over the last 6 years (including 3 previous years under Project Apuseni). Thanks to all of them (alphabetic order): Apuseni Nature Park: Alin Mos Arnica project team: Mona Cosma, Valentin Dumitrescu, Dr. Wolfgang Kathe, Adriana Morea, Maria Mihul, Michael Klemens, Dr. Florin Pacurar, Horatiu Popa, Razvan Popa, Bobby Pelger, Gârda Nicoleta, Dr. Susanne Schmitt, Luminita Tanasie Architects for Humanity: Chris Medland Babes-Bolyai University Cluj-Napoca (UBB) represented by Prof. Dr. Laszlo Rakosy Community Gârda de Sus, represented by the major Marin Virciu Darwin Initiative, London Drying (data collection): Bîte Daniela, Broscăţan Călin, Câmpean Sorin, Cosma Ramona, Dumitrescu Valentin, Feneşan Iulia, Gârda Nicoleta, Klemens Michael, Morea Adriana, Neag Cristina, Păcurar Adriana, Paşca Aniela, Pelger Bogdan, Rotar Bogdan, Spătăceanu Lucia, Tudose Sorina Ethnography: Dr. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
THE USE of BIOTECHNOLOGY for SUPPLYING of PLANT MATERIAL for TRADITIONAL CULTURE of MEDICINAL, RARE SPECIES Arnica Montana L
Lucrări Ştiinţifice – vol. 57 (1) 2014, seria Agronomie THE USE OF BIOTECHNOLOGY FOR SUPPLYING OF PLANT MATERIAL FOR TRADITIONAL CULTURE OF MEDICINAL, RARE SPECIES Arnica montana L. Iuliana PANCIU1, Irina HOLOBIUC2, Rodica CĂTANĂ2 e-mail: [email protected] Abstract Taking into account the importance of Arnica montana, the attempts to improve the culture technologies are justified. Our study had the aim to optimize in vitro plant multiplication and growth as a source of plants for traditional culture in this species. Aseptic germinated seedlings were used as explants, apical meristem being the origin of the direct morphogenesis process. For induction of regeneration, to promote plant growth and rooting, we used some combination of growth factors and supplements as ascorbic acid, glutamine, PVP and active charcoal added in culture media based on MS formula. We improved the efficiency of micropropagation, the best values were recorded on variant supplemented with PVP –.7 regenerants/explant in the first 4 weeks and increasing at 17/ initial explant ( mean 14.62) after 8 weeks. Concerning the germination capacity of the seeds scored after 2 weeks in sterile condition, the rate was 47.76 and in non-sterile conditions, the rate varied depending of the substrate used. Comparing to the plants obtained through traditional seeds germination, in vitro plants grew faster and were more vigourously. The micropropagation protocol in Arnica montana L. allowed us to regenerate healthy, developed and rooted plants in the second subculture cycle. This in vitro methodology can provide plant material for initiation of a conventional culture after acclimatization of the obtained vitroplants. -
Download The
SYSTEMATICA OF ARNICA, SUBGENUS AUSTROMONTANA AND A NEW SUBGENUS, CALARNICA (ASTERACEAE:SENECIONEAE) by GERALD BANE STRALEY B.Sc, Virginia Polytechnic Institute, 1968 M.Sc, Ohio University, 1974 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1980 © Gerald Bane Straley, 1980 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department nf Botany The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 26 March 1980 ABSTRACT Seven species are recognized in Arnica subgenus Austromontana and two species in a new subgenus Calarnica based on a critical review and conserva• tive revision of the species. Chromosome numbers are given for 91 populations representing all species, including the first reports for Arnica nevadensis. Results of apomixis, vegetative reproduction, breeding studies, and artifi• cial hybridizations are given. Interrelationships of insect pollinators, leaf miners, achene feeders, and floret feeders are presented. Arnica cordifolia, the ancestral species consists largely of tetraploid populations, which are either autonomous or pseudogamous apomicts, and to a lesser degree diploid, triploid, pentaploid, and hexaploid populations. -
Riverside State Park
Provisonal Report Rare Plant and Vegetation Survey of Riverside State Park Pacific Biodiversity Institute 2 Provisonal Report Rare Plant and Vegetation Survey of Riverside State Park Peter H. Morrison [email protected] George Wooten [email protected] Juliet Rhodes [email protected] Robin O’Quinn, Ph.D. [email protected] Hans M. Smith IV [email protected] January 2009 Pacific Biodiversity Institute P.O. Box 298 Winthrop, Washington 98862 509-996-2490 Recommended Citation Morrison, P.H., G. Wooten, J. Rhodes, R. O’Quinn and H.M. Smith IV, 2008. Provisional Report: Rare Plant and Vegetation Survey of Riverside State Park. Pacific Biodiversity Institute, Winthrop, Washington. 433 p. Acknowledgements Diana Hackenburg and Alexis Monetta assisted with entering and checking the data we collected into databases. The photographs in this report were taken by Peter Morrison, Robin O’Quinn, Geroge Wooten, and Diana Hackenburg. Project Funding This project was funded by the Washington State Parks and Recreation Commission. 3 Executive Summary Pacific Biodiversity Institute (PBI) conducted a rare plant and vegetation survey of Riverside State Park (RSP) for the Washington State Parks and Recreation Commission (WSPRC). RSP is located in Spokane County, Washington. A large portion of the park is located within the City of Spokane. RSP extends along both sides of the Spokane River and includes upland areas on the basalt plateau above the river terraces. The park also includes the lower portion of the Little Spokane River and adjacent uplands. The park contains numerous trails, campgrounds and other recreational facilities. The park receives a tremendous amount of recreational use from the nearby population. -
Mountain Plants of Northeastern Utah
MOUNTAIN PLANTS OF NORTHEASTERN UTAH Original booklet and drawings by Berniece A. Andersen and Arthur H. Holmgren Revised May 1996 HG 506 FOREWORD In the original printing, the purpose of this manual was to serve as a guide for students, amateur botanists and anyone interested in the wildflowers of a rather limited geographic area. The intent was to depict and describe over 400 common, conspicuous or beautiful species. In this revision we have tried to maintain the intent and integrity of the original. Scientific names have been updated in accordance with changes in taxonomic thought since the time of the first printing. Some changes have been incorporated in order to make the manual more user-friendly for the beginner. The species are now organized primarily by floral color. We hope that these changes serve to enhance the enjoyment and usefulness of this long-popular manual. We would also like to thank Larry A. Rupp, Extension Horticulture Specialist, for critical review of the draft and for the cover photo. Linda Allen, Assistant Curator, Intermountain Herbarium Donna H. Falkenborg, Extension Editor Utah State University Extension is an affirmative action/equal employment opportunity employer and educational organization. We offer our programs to persons regardless of race, color, national origin, sex, religion, age or disability. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert L. Gilliland, Vice-President and Director, Cooperative Extension