Cell Reports Article Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter Julia Preobraschenski,1 Cyril Cheret,2 Marcelo Ganzella,1 Johannes Friedrich Zander,2 Karin Richter,2 Stephan Schenck,3 Reinhard Jahn,1,4,* and Gudrun Ahnert-Hilger2,* 1Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Go¨ ttingen, Germany 2Institute for Integrative Neuroanatomy, Charite´ , Medical University of Berlin, 10115 Berlin, Germany 3Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen, Switzerland 4Lead Contact *Correspondence:
[email protected] (R.J.),
[email protected] (G.A.-H.) https://doi.org/10.1016/j.celrep.2018.03.055 SUMMARY ities and transport mechanisms vary among the subfamilies, because the transmitters have different net charges, thus Vesicular glutamate transporters (VGLUTs) fill synap- requiring distinct ion-coupling mechanisms (Omote et al., tic vesicles with glutamate and are thus essential for 2011). Moreover, the transporters must maintain efficient uptake glutamatergic neurotransmission. However, VGLUTs not only when a vesicle is empty, i.e., filled with extracellular were originally discovered as members of a trans- electrolytes acquired during endocytosis, but also when a porter subfamily specific for inorganic phosphate vesicle is partially filled, with transmitter concentrations well (P ). It is still unclear how VGLUTs accommodate exceeding 100 mM requiring highly adaptive transport mecha- i nisms (Farsi et al., 2017)(Takamori, 2016). glutamate transport coupled to an electrochemical + The ionic mechanism or mechanisms by which SVs are filled proton gradient DmH with inversely directed Pi + with glutamate, the main excitatory neurotransmitter of the transport coupled to the Na gradient and the mem- mammalian CNS, are only partially understood.