The Jerusalem Articho] Crop Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolism and Accumulation of Sugars Translocated to Fruit and Their Regulation
J. Japan. Soc. Hort. Sci. 79 (1): 1–15. 2010. Available online at www.jstage.jst.go.jp/browse/jjshs1 JSHS © 2010 Review Metabolism and Accumulation of Sugars Translocated to Fruit and Their Regulation Shohei Yamaki Collage of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai 487-8501, Japan Photoassimilates needed for fruit development are supplied from leaves, converted in fruit to substances relating to the specific quality of the fruit, then accumulate in the fruit. There are various regulation steps in the process from photoassimilate synthesis in leaves to sugar accumulation in fruit: photosynthesis, synthesis of translocation sugars, loading of translocation sugars, their translocation, their unloading, their membrane transport, their metabolic conversion, and compartmentation in vacuoles. Thus, it is important to clarify the mechanism and regulation of each step in fruit development. In this review, mainly the metabolic conversion of translocation sugars and their regulation at the genetic level in fruit are described because the metabolic conversion in fruit contributes greatly to produce the sink activity needed for fruit development. Key Words: fruit, sink activity, sorbitol, sucrose, sugar metabolism. out from phloem tissue. 6. Membrane transport: Sugars Introduction unloaded apoplastically are taken up in cells by a Photoassimilate in fruit depends mainly on supply transporter on the plasma membrane. 7. Metabolic from leaves, but some fruits in their early stages of conversion: Translocation sugars unloaded in fruit by development can supply it by their own photosynthesis. the symplasmic or apoplastic pathway are converted to Fruit is a heterotrophic organ. However, specific various substances; first, invertase and sucrose synthase substances in some fruits are generated in the fruit by metabolize sucrose, sorbitol dehydrogenase metabolizes themselves from photoassimilates etc., and can sorbitol, and then sucrose phosphate synthase synthe- accumulate in fruit. -
Invasive Weeds of the Appalachian Region
$10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon. -
John Mccone and the Assassination of President John F. Kennedy
C061B5413 Approved for Release: 2014/09/29 C06185413 •' •' , S&GRIH'!JNOFORN Death of a President (U) DCI John McCone and the Assassination of President John F. Kennedy David Robarge (U) In recognition ofthe .50th anniversary ofthe assassination ofPresident John F. Kennedy on 22 November 1963, Studies in Intelligence reprints the below, which originally appeared as a chajJter in ChiefHistorian Da\tld Robarge:S bookJohn McCone as Director ofCentral Intelligence, 1961-1?65, published by the Center for the Study ofIntelligence in 200.5. (U) Misconceptions abound regarding CIA~ connection to the assas· sination and its role in subsequent investigations, contributing to the foct that, according to a recent polltalrm by the History Chan· (U) Walter Elder dashed nel, 71 percent ofthe American public still believes that Kennedy's in and cried'' out, 'The del:lth reniltedfrom a conspiracy. president's been shot/' ·(U) Robarge tells a very different story about Cl.A!! immediDte response to the assassination, ils interaction wilh the FBI and War ren Commission, the surprise appearance ofKGB defector Htri Nosenko with troubling information about Lee Harvey Oswald, and DC/ McCone's involvement with later inquiries about Kennedy's '' murder. Nothing in tlie numerous books and articles about the ass~sination that have appeared since the publication ofMcCone has materially changed any ofRobarge~ conclusions. (S) Jolut McCone and Lyman K.irk7 leaving, over hu1th, wanted to talk patrick, the Agency's Executive about the PFIAB meeting with his Director-Comptroller, met with Presi· senior deputies. They were eating in dent's Foreign Intelligence Advisory the French Room, a smaJI space next Boanl (PFIAB) through the morning .to the director•s office, when of22 November 1963. -
The Jerusalem Artichoke: Something New for Next Year's Garden?
The Jerusalem Artichoke: Something New for Next Year’s Garden? By Joan Allen If you’re a gardener who likes to grow new vegetables, use native plants or support beneficial insects season-long, the Jerusalem artichoke (Helianthus tuberosus) might be fun to try. As a member of the sunflower genus, this plant produces tall stems topped with bright yellow flowers. There are a few different theories on the origin of the name, which is a curiosity since it’s native to eastern North American. The most popular seems to be that ‘Jerusalem’ is an American twist on the Italian ‘girasole’ meaning ‘turning to the sun’. Other common names include sunchoke, earth apple or topinambour (French). Plants reach a height of 5-10 feet and produce flowers from August to October, providing a nice source of pollen and nectar for beneficial insects late in the season. The plants are sturdy and rather coarse. Leaves are 4-10” long, thick and rough, and have toothed edges. They are opposite on the lower stem and alternate above. Flowers are 3” across. This plant will do well in gardens in the northern two thirds of the eastern United States and tolerates a wide range of soil types and pH, although a bit alkaline is preferred. Soil should be well drained. A consistent water supply is especially important as the tubers (edible part) develop late in the summer. This is a VERY prolific plant. According to one reference, a single root can produce as many as 75-200 new tubers in a single year. On top of that, the plant is perennial and tends to spread, so it can become a bit of a problem in limited spaces if not kept in check. -
GRAS Notice GRN 849 Agency Response Letter
FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY &APPLIED NUTRITION Donald F. Schmitt, M.P.H. Tox Strategies, Inc. th 931 West 75 Street, PMB 255 Naperville, IL 60565 Re: GRAS Notice No. GRN 000849 Dear Mr. Schmitt: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000849. We received the notice that you submitted on behalf of Intrinsic Organics, LLC (Intrinsic Organics) on February 11, 2019, and filed it on May 7, 2019. Intrinsic Organics submitted amendments to the notice on July 10, 2019, September 11, 2019, September 13, 2019, and October 15, 2019, that clarified the calculation of equivalent use levels, and provided additional information on the composition, analytical methods, stability, and the timeframe for the literature search conducted. The subject of the notice is inulin from Jerusalem artichoke (JA inulin) for use as a bulking agent in 43 food categories at the following use levels: 1−1.4 g/serving in infant and toddler foods, 5−7 g/serving in ready-to-eat breakfast cereals, and 0.5−21 g/100 g in other foods, including meat and poultry products.1 The notice informs us of Intrinsic Organics’ view that this use of JA inulin is GRAS through scientific procedures. Our use of the term, “inulin from Jerusalem artichoke” or “JA inulin” in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA’s labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name. -
Variability in Macroelement Content in the Aboveground Part of Helianthus Tuberosus L
Vol. 61, 2015, No. 4: 158–163 Plant Soil Environ. doi: 10.17221/956/2014-PSE Variability in macroelement content in the aboveground part of Helianthus tuberosus L. at different nitrogen fertilization levels B. Sawicka1, D. Kalembasa2, D. Skiba1 1Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Lublin, Poland 2Department of Soil Science and Agricultural Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland ABSTRACT The contents of nitrogen (N), potassium, phosphorus, calcium, magnesium and sodium were estimated in tubers of Jerusalem artichoke Helianthus tuberosus coming from the field experiment conducted over 2010–2012. The experimental factors were the cultivars of Jerusalem artichoke cvs. Albik and Rubik and different nitrogen fertiliza- tion levels, against phosphorus and potassium fertilization and the full dose of manure. Determination of elements in the soil and the dry weight of the aerial parts are performed by standard methods. When using a fixed level of phosphorous-potassium fertilizer, the highest sodium content was obtained at a level of 50 kg N/ha, magnesium and sulphur at a dose of 100 kg of N, nitrogen – 150 kg N/ha, potassium and calcium – in the objects of fertilizer phosphorus-potassium, and phosphorus – in the building control without fertilization. Cv. Albik proved to be more abundant in mineral elements than cv. Rubik. The latter was characterized by a higher stability of characteristics. Keywords: animal fodder; topinambour; biomass; macronutrients; nutrition Owing to its nutritional and energy value, Jerusalem Station in Parczew (51°64'N, 22°90'E), in the years artichoke (Helianthus tuberosus L.) is becoming an 2010–2012, were used as the study material. -