The Immunomodulatory Effect of Plant Lectins: a Review with Emphasis on Artinm Properties

Total Page:16

File Type:pdf, Size:1020Kb

The Immunomodulatory Effect of Plant Lectins: a Review with Emphasis on Artinm Properties Glycoconj J (2013) 30:641–657 DOI 10.1007/s10719-012-9464-4 The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties Maria A. Souza & Fernanda C. Carvalho & Luciana P. Ruas & Rafael Ricci-Azevedo & Maria Cristina Roque-Barreira Received: 30 October 2012 /Revised: 6 December 2012 /Accepted: 9 December 2012 /Published online: 9 January 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Advances in the glycobiology and immunology Abbreviations fields have provided many insights into the role of ArtinM Artocarpus heterophyllus lectin manose carbohydrate-protein interactions in the immune system. binding We aim to present a comprehensive review of the effects ML Mistletoe lectin that some plant lectins exert as immunomodulatory agents, rML Recombinant mistletoe lectin showing that they are able to positively modify the immune RIPs Type-2 ribosomes inactivating proteins response to certain pathological conditions, such as cancer RNA Ribonucleic acid and infections. The present review comprises four main NK Natural killer cells themes: (1) an overview of plant lectins that exert immuno- IL-12 Interleukin – (12) modulatory effects and the mechanisms accounting for these IFN-γ Interferon gamma activities; (2) general characteristics of the immunomodula- TLR Toll-like receptor tory lectin ArtinM from the seeds of Artocarpus heterophyl- TNF-α Tumor necrosis factor-alpha lus; (3) activation of innate immunity cells by ArtinM and Th1 T helper 1 consequent induction of Th1 immunity; (4) resistance con- Th2 T helper 2 ferred by ArtinM administration in infections with intracel- Th17 T helper 17 lular pathogens, such as Leishmania (Leishmania) major, MHC II Major histocompatibility complex class II Leishmania (Leishmania) amazonensis,andParacocci- KML Korean mistletoe lectin dioides brasiliensis. We believe that this review will be a PHA-E and Phytohaemagglutinin valuable resource for more studies in this relatively PHA-L neglected area of research, which has the potential to reveal Con A Concanavalin A carbohydrate targets for novel prophylactic and therapeutic PSA Pisum sativum agglutinin strategies. WGA Wheat germ agglutinin Cramoll Cratylia mollis lectin Keywords Plantlectins .ArtinMlectin .Immunomodulation . BanLec Lectin from Musa paradisiacal Toll-like receptor . Leishmania . Paracoccidioides brasiliensis Conbr Lectin from Canavalia brasiliensis DrosL Dioclea rostrata lectin DvioL Dioclea violacea lectin M. A. Souza Dvirl Dioclea virgata lectin Instituto de Ciências Biomédicas, Universidade Federal de Garlic Lectin from Alium sativum Uberlândia, Uberlândia, MG, Brazil PAA Pisum arvense agglutinin (lectin from F. C. Carvalho : L. P. Ruas : R. Ricci-Azevedo : Pisum arvense) M. C. Roque-Barreira (*) PWM Pokeweed mitogen (lectin from Phytolacca Departamento de Biologia Celular e Molecular e Bioagentes Americana) Patogênicos, Faculdade de Medicina de Ribeirão Preto, SBA Soybean agglutinin Universidade de São Paulo, 14049900 Ribeirão Preto, São Paulo, Brazil PNA Peanut agglutinin e-mail: [email protected] AAL Aleuria aurantia lectin 642 Glycoconj J (2013) 30:641–657 ScLL Synadenium carinatum lectin latex including cell–cell recognition, cell proliferation, cell migra- UEA-1 Ulex europaeus agglutinin tion, cell adhesion to the extracellular matrix, and host- CTL Cytotoxic T lymphocytes parasite interactions [1, 2]. Since the 1960s, plant lectins NOD Non-obese diabetic mice have been extensively used as valuable tools in biomedical JRL Jacalin-related lectins research, because of their interactions with receptor-linked CRD Carbohydrate-recognition domain glycans on cell surfaces may trigger cell signaling and HRP Horseradish peroxidase biochemical responses. rArtinM Recombinant ArtinM Several plant lectins exert immunomodulatory activi- NO Nitric oxide ties that are initiated by their interaction with glycan’s PAMPs Pathogen-associated molecular patterns moieties present over the surface of immune cells. Such TIR Toll/interleukin-1 receptor interaction may trigger signal transduction, to produce MyD88 Myeloid differentiation primary response certain cytokines (Table 1) and induce efficient immune gene 88 responses against tumors or microbial infections. Hence, PCM Paracoccidioidomycosis immunomodulatory lectins have potential pharmaceutical CFU Colony-forming units applications or may help to identify sugar targets for new therapeutic strategies. The European mistletoe (Viscum album) contains the most noticeable plant lectin endowed with immunomodula- Overview of immunomodulatory plant lectins tory and antitumor activities. Mistletoe lectins (ML) type I, II and III are a group of glycosylated, 56–64 kDa cytotoxic Lectins are carbohydrate-binding proteins of non-immune proteins, which consist of two non-covalently associated origin. They are involved in various biological processes, pairs of disulfide-linked A-B dimers and are considered to Table 1 Some plant lectins that induce cytokines production Lectin Source Cytokine Reference ArtinM Artocarpus heterophyllus IL-12 and IL-10 (murine macrophages and dendritic cells) [26, 74, 75] TNF-α (murine mast cells) [117] IL-10/IFN-γ (murine spleen cells) [118] Banlec Musa paradisiaca IFN-γ, IL-10, and IL-4 (murine spleen cells) [29] ConA Canavalia ensiformis IFN-γ (murine spleen cells) [75] IFN-γ and IL-2 (murine spleen cells) [25] IL-5, IL-10, TNF-α, and IFN-γ (human peripheral blood mononuclear cells—PBMCs) [119] Conbr Canavalia brasiliensis IL-5, IL-10, TNF-α, and IFN-γ (human PBMCs) [119] IFN-γ (murine spleen cells) [75] Cramoll Cratylia mollis IFN-γ (murine spleen cells) [28] DrosL Dioclea rostrata IL-5, IL-10, TNF-α, and IFN-γ (human PBMCs) [119] TNF-α and IL1-β (peritoneal cavity of rat) [120] Dviol Dioclea violacea IL-5 (human PBMCs) [119] Dvirl Dioclea virgata IL-5, IL-10, TNF-α, and IFN-γ (human PBMCs) [119] ASA-I Alium sativum IFN-γ and IL-12 (murine spleen cells) [30] KML Viscum album var. coloratum IL-12 (human dendritic cells) [121] ML-I Viscum album IL-12 (human PBMCs) [11] IL-15 (human neutrophils) [122] IL-6, TNF-α, and IL-10 (human PBMCs) [123] PAA Pisum arvense IFN-γ (murine spleen cells) [75] PHA Phaseolus vulgaris IFN-γ and IL-2 (murine spleen cells) [25] PSA Pisum sativum IFN-γ and IL-2 (murine spleen cells) [25] PWM Phytolacca americana TNF-α, IL-12, and IL-6 (human PBMCs) [124] ScLL Synadenium carinatum IFN-γ and IL-10 (murine bronchoalveolar lavage fluid-BALF) [33] UEA-1 Ulex europaeus IL-2 and IFN-γ (mice spleen) [41] WGA Triticum vulgaris IL-12 and IFN-γ (murine spleen cells) [25] Glycoconj J (2013) 30:641–657 643 be type-2 ribosome-inactivating protein (RIP). The B-chain administration. The high IFN-γ response indicates that rML selectively binds to β-galactosides [3], whereas the A-chain administration stimulates Th1 cells, which may mediate an catalyzes hydrolysis of the N-glycosydic bond at adenine- antitumor T-cell response (reviewed by Zwierzina et al.[19]). 4324 in the eukaryotic 28S ribosomal RNA, thereby inhib- Besides the European mistletoe, extracts of the Korean and iting the elongation step of protein biosynthesis [4]. ML-I Chinese mistletoes (Viscum album coloratum and Viscum was identified as the active component of the Viscum album articulatum, respectively) contain type-2 RIPs that bind D- extract and is applied as a complementary treatment of galactose [20, 21] and have high structural homology with cancer patients [5]. The ML-I B-chain binds to glycans on ML. Like ML-I, they are endowed with immunomodulatory the surface of cancer cells and allows A-chain entry into the properties, as demonstrated by in vitro and in vivo studies. The cytoplasm, where the latter chain is enzymatically active and B-chain of the Korean mistletoe lectin (KML) accounts for its highly cytotoxic. In vitro and in vivo studies have shown immunomodulatory and antitumor activities. This is because that the antitumor effects of ML-I are not only cytotoxic, but the KML B-chain promotes NK cells activation and produc- also immunomodulatory [6], an activity that is fundamental to tion of cytokines and inflammatory mediators by macrophages its antitumor properties [7] (reviewed by Bocci, 1993 [8]). The [22, 23]. KML interaction with TLR-4 molecules is responsi- cloning of the mistletoe lectin gene and the separate heterol- ble for macrophage activation and cytokine production. Mac- ogous expression of the single chains [9, 10] have pointed out rophages stimulation with KLM results in upregulation of that the B-chain is responsible for the immunostimulatory TLR4 expression and enhanced TNF-α production, which is activity of ML-I, mainly manifested by augmented IL-12 reduced by anti-TLR4 specific antibodies or by assaying mac- production and increased cytokine-induced Natural Killer rophages from TLR-4 deficient mice [24]. The recombinant B- Cells activation [11]. Comparison of the biological activities chain of the Chinese mistletoe lectin (articulatin) stimulates of the recombinant Mistletoe lectins (rML) -heterodimer [10] human mononuclear cells to release TNF-α and IL-6 [21]. This with those of some ML-I mutants [12] revealed a close corre- suggests that the B-chain acts as an immunomodulator, like lation between cytotoxicity, apoptosis, and the enzymatic that of the European and Korean mistletoes. activity of the rML A-chain. Both the enzymatic activity Th1 immunity is induced by immunomodulatory plant exerted by the A-chain and the carbohydrate binding activity lectins. As a rule, the Th1 immune response, manifested by elicited by the B-chain are essential for the ML-I effect as an high levels of IFN-γ production, occurs through an IL-12- anticancer agent. The first step in the biological action of ML dependent mechanism. In vitro assays with 12 different plant is to recognize and bind to specific ligands on the surface of lectins have shown that six of the lectins induce murine spleen target cells. Determination of the sugar specificity of ML has cells to produce IL-12 and IFN-γ: Con A from Canavalia shown that this lectin preferentially binds to β-galactosides in ensiformis, which binds to α-linked mannose; PHA-E and the oligosaccharides of glycoproteins [6, 13, 14].
Recommended publications
  • The Loss of an Old Friend
    The Loss Of An Old Friend. The story of what happened to the male Phytolacca dioica x weberbauri in the Palomar College Arboretum. Antonio Rangel; March, 2014 Palomar Community College Facilities Department, Grounds Services & Friends of the Palomar College Arboretum 1140 West Mission Road San Marcos, California 9206 Introduction As best anyone knows, this hybrid species has never been seen in the wild and was the result of an incidental and accidental fertilization between the two species at the Huntington Botanical gardens in San Marino California over 40 years ago. The In December of 2013 the Palomar College Grounds Huntington has one female P. dioica and one male P. Department was faced with a painful and weberbaueri very close to each other. Bees or wind unfortunate decision. They were forced to remove a transfer the pollen and the result is a hybrid. (Peers large and beautiful specimen of Phytolacca dioica x Comm) A few seedlings were donated to the college weberbaueri, because it had become so infected by the Huntington in the early 1970s for planting in with an unknown root pathogen, that there was no the Arboretum. Robert James Kelly, who was a very doubt, in the coming years it was in danger of active promoter, founder and advocate of the toppling over. Sadly the specimen had been in Arboretum, was the person who is said to have decline for at least two years and was the largest chosen the planting location for this plant. “tree” on campus. Collectively, the plants in this genus do not develop lignified (hardened) wood composed of multiple layers of old dead cells “tightly adhered to each other” in the same manner that true trees do.
    [Show full text]
  • Edible Leafy Plants from Mexico As Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: a Review
    antioxidants Review Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review Lourdes Mateos-Maces 1, José Luis Chávez-Servia 2,* , Araceli Minerva Vera-Guzmán 2 , Elia Nora Aquino-Bolaños 3 , Jimena E. Alba-Jiménez 4 and Bethsabe Belem Villagómez-González 2 1 Recursos Genéticos y Productividad-Genética, Colegio de Posgraduados, Carr. México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Mexico; [email protected] 2 CIIDIR-Oaxaca, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; [email protected] (A.M.V.-G.); [email protected] (B.B.V.-G.) 3 Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico; [email protected] 4 CONACyT-Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico; [email protected] * Correspondence: [email protected] Received: 15 May 2020; Accepted: 13 June 2020; Published: 20 June 2020 Abstract: A review of indigenous Mexican plants with edible stems and leaves and their nutritional and nutraceutical potential was conducted, complemented by the authors’ experiences. In Mexico, more than 250 species with edible stems, leaves, vines and flowers, known as “quelites,” are collected or are cultivated and consumed. The assessment of the quelite composition depends on the chemical characteristics of the compounds being evaluated; the protein quality is a direct function of the amino acid content, which is evaluated by high-performance liquid chromatography (HPLC), and the contribution of minerals is evaluated by atomic absorption spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES) or ICP mass spectrometry. The total contents of phenols, flavonoids, carotenoids, saponins and other general compounds have been analyzed using UV-vis spectrophotometry and by HPLC.
    [Show full text]
  • The Jerusalem Artichoke: Something New for Next Year's Garden?
    The Jerusalem Artichoke: Something New for Next Year’s Garden? By Joan Allen If you’re a gardener who likes to grow new vegetables, use native plants or support beneficial insects season-long, the Jerusalem artichoke (Helianthus tuberosus) might be fun to try. As a member of the sunflower genus, this plant produces tall stems topped with bright yellow flowers. There are a few different theories on the origin of the name, which is a curiosity since it’s native to eastern North American. The most popular seems to be that ‘Jerusalem’ is an American twist on the Italian ‘girasole’ meaning ‘turning to the sun’. Other common names include sunchoke, earth apple or topinambour (French). Plants reach a height of 5-10 feet and produce flowers from August to October, providing a nice source of pollen and nectar for beneficial insects late in the season. The plants are sturdy and rather coarse. Leaves are 4-10” long, thick and rough, and have toothed edges. They are opposite on the lower stem and alternate above. Flowers are 3” across. This plant will do well in gardens in the northern two thirds of the eastern United States and tolerates a wide range of soil types and pH, although a bit alkaline is preferred. Soil should be well drained. A consistent water supply is especially important as the tubers (edible part) develop late in the summer. This is a VERY prolific plant. According to one reference, a single root can produce as many as 75-200 new tubers in a single year. On top of that, the plant is perennial and tends to spread, so it can become a bit of a problem in limited spaces if not kept in check.
    [Show full text]
  • Broad-Spectrum Virus Resistance in Transgenic Plants Expressing Pokeweed Antiviral Protein JENNIFER K
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 7089-7093, August 1993 Genetics Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein JENNIFER K. LODGE*, WOJCIECH K. KANIEWSKI, AND NILGUN E. TUMERtt Monsanto Co., 700 Chesterfield Village Parkway, St. Louis, MO 63198 Communicated by Myron K. Brakke, April 12, 1993 ABSTRACT Exogenous application of pokeweed antiviral show that expression of PAP confers resistance to unrelated protein (PAP), a ribosome-inhibiting protein found in the cell viruses. Virus resistance, previously observed in transgenic walls of Phytolacca americana (pokeweed), protects heterolo- plants expressing coat protein genes or the read-through gous plants from viral infection. A cDNA clone for PAP was component of the tobacco mosaic virus replicase gene, has isolated and introduced into tobacco and potato plants by been specific for the virus from which the genes are derived transformation with Agrobacterium tumefaciens. Transgenic or closely related viruses (8, 9). The results of the experi- plants that expressed either PAP or a double mutant derivative ments described here provide a way of producing transgenic of PAP showed resistance to infection by different viruses. plants that may be resistant to a broad spectrum of plant Resistance was effective against both mechanical and aphid viruses. transmission. Analysis of the vacuum infiltrate of leaves ex- pressing PAP showed that it is enriched in the intercellular MATERIALS AND METHODS fluid. Analysis of resistance in transgenic plants suggests that PAP confers viral resistance by inhibiting an early event in Isolation of a PAP cDNA Clone. A probe to identify the infection. Previous methods for creating virus-resistant plants cDNA for the PAP gene was made by using PCR to amplify have been specific for a particular virus or closely related the DNA that encodes the first 30 amino acids of the mature viruses.
    [Show full text]
  • GRAS Notice GRN 849 Agency Response Letter
    FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY &APPLIED NUTRITION Donald F. Schmitt, M.P.H. Tox Strategies, Inc. th 931 West 75 Street, PMB 255 Naperville, IL 60565 Re: GRAS Notice No. GRN 000849 Dear Mr. Schmitt: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000849. We received the notice that you submitted on behalf of Intrinsic Organics, LLC (Intrinsic Organics) on February 11, 2019, and filed it on May 7, 2019. Intrinsic Organics submitted amendments to the notice on July 10, 2019, September 11, 2019, September 13, 2019, and October 15, 2019, that clarified the calculation of equivalent use levels, and provided additional information on the composition, analytical methods, stability, and the timeframe for the literature search conducted. The subject of the notice is inulin from Jerusalem artichoke (JA inulin) for use as a bulking agent in 43 food categories at the following use levels: 1−1.4 g/serving in infant and toddler foods, 5−7 g/serving in ready-to-eat breakfast cereals, and 0.5−21 g/100 g in other foods, including meat and poultry products.1 The notice informs us of Intrinsic Organics’ view that this use of JA inulin is GRAS through scientific procedures. Our use of the term, “inulin from Jerusalem artichoke” or “JA inulin” in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA’s labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name.
    [Show full text]
  • Therapeutic Potential of Vitamin C: an Overview of Various Biological Activities Lata Rani1, Neelam Sharma2, Sukhbir Singh2, Ajmer S
    REVIEW ARTICLE Therapeutic Potential of Vitamin C: An Overview of Various Biological Activities Lata Rani1, Neelam Sharma2, Sukhbir Singh2, Ajmer S. Grewal1,2* 1Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India 2Chitkara College of Pharmacy, Chitkara University, Punjab, India Received: 15th October, 19; Revised: 18th November, 19, Accepted: 15th December, 19; Available Online: 25th December, 2019 ABSTRACT Vitamins are vital nutrients that are required for different body functions properly, and they are provided to the body externally through diet. Vitamin C, also known as ascorbic acid, is an essential nutrient that is required for the proper running of different body functions. It is a water-soluble vitamin and lost during the processing of food. The main sources of vitamin C are citrus fruits (kakadu plum, acerola cherries, guavas, kiwi, lemon, lychees, kale, oranges, peaches, tomatoes, black currant, thyme, parsley, rose hips, kale and strawberries), green leafy vegetables (chilli peppers, tomato, sweet yellow peppers, parsley, brussel sprouts, potatoes, mustard spinach and broccoli), fortified cereal and some animals. Vitamin C deficiency leads to scurvy, which mainly affects older, malnourished adults. Vitamin C acts as a strong antioxidant, and this property enriches various biological activities. It is believed that high dose of vitamin C may help in reducing the risk of various diseases like cancer, diabetes, cardiovascular disorders, blood pressure, respiratory syndromes, common cold, reproduction, cognitive diseases, skin problems, age-related muscular degeneration, cataract and may enhance immunity. This mini-review article has been planned to discuss sources, deficiency symptoms, daily requirements, therapeutic potential, and various biological activities of vitamin C.
    [Show full text]
  • Variability in Macroelement Content in the Aboveground Part of Helianthus Tuberosus L
    Vol. 61, 2015, No. 4: 158–163 Plant Soil Environ. doi: 10.17221/956/2014-PSE Variability in macroelement content in the aboveground part of Helianthus tuberosus L. at different nitrogen fertilization levels B. Sawicka1, D. Kalembasa2, D. Skiba1 1Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Lublin, Poland 2Department of Soil Science and Agricultural Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland ABSTRACT The contents of nitrogen (N), potassium, phosphorus, calcium, magnesium and sodium were estimated in tubers of Jerusalem artichoke Helianthus tuberosus coming from the field experiment conducted over 2010–2012. The experimental factors were the cultivars of Jerusalem artichoke cvs. Albik and Rubik and different nitrogen fertiliza- tion levels, against phosphorus and potassium fertilization and the full dose of manure. Determination of elements in the soil and the dry weight of the aerial parts are performed by standard methods. When using a fixed level of phosphorous-potassium fertilizer, the highest sodium content was obtained at a level of 50 kg N/ha, magnesium and sulphur at a dose of 100 kg of N, nitrogen – 150 kg N/ha, potassium and calcium – in the objects of fertilizer phosphorus-potassium, and phosphorus – in the building control without fertilization. Cv. Albik proved to be more abundant in mineral elements than cv. Rubik. The latter was characterized by a higher stability of characteristics. Keywords: animal fodder; topinambour; biomass; macronutrients; nutrition Owing to its nutritional and energy value, Jerusalem Station in Parczew (51°64'N, 22°90'E), in the years artichoke (Helianthus tuberosus L.) is becoming an 2010–2012, were used as the study material.
    [Show full text]
  • Genetic Variation in Jerusalem Artichoke (Helianthus Tuberosus
    HORTSCIENCE 40(6):1675–1678. 2005. Materials and Methods Three single plant replications of 190 clones Genetic Variation in Jerusalem were grown at the University of Georgia Hor- ticulture Farm near Watkinsville (33° 57' N) Artichoke (Helianthus tuberosus L.) during the summer of 1999. Individual tubers or tuber pieces of 30 g were planted on March Flowering Date and Duration 24. The plants were grown in a Cecil sandy clay loam and fertilized with 1,121 kg·ha–1of Stanley J. Kays1 and F. Kultur 10–6.5–8.3, one half applied before planting. Department of Horticulture, Plant Sciences Building, The University of Georgia, Within row and between row spacings (0.5 × Athens, GA 30602-7273 5 m) were selected to minimize plant to plant competition and to facilitate fungicide appli- Additional index words. plant breeding, inulin, bulking agent, fructose cations (mancozeb at 2.24 kg·ha–1). The dates of anthesis of the fi rst fl ower and senescence Abstract. Increased interest in the Jerusalem artichoke (Helianthus tuberosus L.) stems of the last fl ower per plant were recorded at from the high level of inulin, a straight chain fructan, found in the tubers that has a weekly intervals from planting until frost. Very number of current and potential industrial applications. Defi ciencies in existing cultivars little variation in fl owering was found among have underscored the need for a pragmatic breeding program. Since synchronization of replicates for individual clones. Data on fl ow- fl owering has a pronounced infl uence on genetic crosses that can be made, we assessed ering date were also collected in southeastern the fl owering date and duration of 190 clones with selected clones similarly monitored for Missouri (35° 3' N; planted 1 Mar.) in 1998 two additional growing seasons.
    [Show full text]
  • Jerusalem Artichoke (Helianthus Tuberosus L.): a Review of in Vivo and in Vitro Propagation
    International Journal of Horticultural Science 2014, 20 (3–4): 131–136. Agroinform Publishing House, Budapest, Printed in Hungary ISSN 1585-0404 Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation Alla, N. A.,1,2 * Domokos-Szabolcsy, É.,2 El-Ramady, H.,2,3 Hodossi, S.,4 Fári, M.,2 Ragab, M.5 & Taha H.1 1Plant Biotechnology Dept., Genetic Engineering Div., National Research center, 33-El-Behouth St., 12622 Dokki, Cairo, Egypt (E-mail: [email protected] and [email protected]) 2Agricultural Botanics, Plant Physiology and Biotechnology Dept., Debrecen Uni., AGTC Böszörményi utca. 138, 4032 Debrecen, Hungary (E-mail: [email protected] and [email protected]) 3Soil and Water Sciences Dept., Faculty of Agriculture, Kafrelsheikh Uni., 33516 Kafr El-Sheikh, Egypt 4Institute of Research and Development, Center of Agricultural Sciences, Debrecen Uni., Böszörményi utca. 138, 4032 Debrecen, Hungary (E-mail: [email protected]) 5Horticultural Sciences Dept., Faculty of Agriculture, Ain Shams University, Egypt Summary: Jerusalem artichoke (Helianthus tuberosus L.) is an old tuber crop with a recently renewed interest in multipurpose improvement. It is a perennial tuberous plant rich in inulin and is a potential energy crop. During food shortages in times of war Jerusalem artichoke received more attention by scientists and farmers because of its multiple uses as a vegetable, medicinal plant, forage plant and source for biofuel. The energy crisis of the 1970s motivated research on Jerusalem artichoke for biofuel as the aboveground plant biomass and the tubers can be used for this purpose. There are different methods to propagate Jerusalem artichoke using tubers, rhizomes, slips (transplants derived from sprouted tubers), stem cuttings, seeds and tissue culture.
    [Show full text]
  • EMSWCD Weeds Workshop Presentation
    Urban Weeds Control them before they control you! Workshop Outline What is a Weed? Definitions Impacts on Ecosystems & Economy Strategies in Weed Control Prevention Urban Weed Slides (Backyard, Regional, High Alert) Your Role in Weed Control IPM Control Methods Q & A Evaluations What is a WEED? A plant that is considered a nuisance, or troublesome that grows where it is not wanted and often spreads fast, taking the place of desired plants. A plant that is considered a hazard or that causes injury to people, animals, or a desired ecosystem or crop. Some Terminology to Know Non-Native: "Exotic", "alien", and "non-indigenous" to the Willamette Valley Aggressive: fast moving/spreading plant. Invasive: Those that spread into areas where they are not native and cause ecosystem level damage. Noxious: Species (or groups of species) that have been legally designated as pests, for example by a county, state or federal agency. Growth & Spread Terminology Vegetative (roots, stems, rhizomes) Reproductive (Seeds) Impacts from Weeds Affects on Economics Ecosystem-level Habitat & Native Impacts Species Economic Impacts Invasive species cost Americans about $143 billion per year. At least 30 new potential biological invaders enter the US every day. Strategies in Invasive Plant Control Simple Prevention or Eradication (Save $$) Local Control & Management Only (Expensive) Introduction Control Costs Control Acres Infested Acres Detection: focus resources here Time Impacts on Habitat & Native Species Invasive species are a major threat to native species and
    [Show full text]
  • Summer's the Season for Some Plant Swappin' It's Great to Be a Florida
    THE PAWPAW PRESS Newsletter of the Pawpaw Chapter of the Florida Native Plant Society: July–Aug 2019 Summer’s the season for some plant swappin’ The chapter’s annual plant swap and walk is always one of its most popular events, despite occurring in the most swampy, sultry month of the year. This year’s edition, which drew more than 30 people, was held at Indian River Lagoon Park on the Find many more beachside of New photos from this Smyrna Beach. event at Prior to the swap, facebook.com/ members partici- pawpaw pated in a scaven- chapter/ ger hunt organized by trip leader Warren Reynolds. Armed with plant lists complete with some pictures, the group surveyed the paths in search of the plants listed. Along the way, Warren conducted plant identifications and provided interesting information about the plants. The swap itself was held under the shade of a pavilion. Members brought a variety of plants and introduced the plants they brought as well as sharing some growing tips. We were delighted to welcome several new people to the group and to be able to send native plants home with these new plant enthusiasts. We even had a local neighbor stop by while on a bike ride! After four rounds of “swapping,” lots of folks went home with new “trea- sures” and smiles on their faces. It’s great to be a Florida propagator! It’s time to start collecting those wildflower seeds for next year’s wildflower seed packets, and we need your help. Please label your containers or bags of seeds with the your name, the plant name, the date collected and where collected.
    [Show full text]
  • Characterization of Bread Enriched with Jerusalem Artichoke Powder Content
    Journal of Food and Nutrition Research, 2014, Vol. 2, No. 12, 895-898 Available online at http://pubs.sciepub.com/jfnr/2/12/6 © Science and Education Publishing DOI:10.12691/jfnr-2-12-6 Characterization of Bread Enriched with Jerusalem Artichoke Powder Content Ana M Radovanovic1,*, Olivera Z Milovanovic1, Mihailo Z Kipic1, Milica B Ninkovic2, Snezana M Cupara1 1Faculty of Medical Sciences, University of Kragujevac, Serbia 2Medical Faculty of Military Medical Academy, Belgrade, Serbia *Corresponding author: [email protected] Received July 16, 2014; Revised October 28, 2014; Accepted November 07, 2014 Abstract Helianthus tuberosus L. (Jerusalem artichoke) tubers are good source of dietary fiber (inulin) due to which are beneficial to human health. The objective of this study was to characterize wheat bread enriched with content of Jerusalem artichoke powder by organoleptic properties, nutritional and caloric value, microbiological safety, glycemic index (GI) and glycemic load (GL). The bread was made from yeast dough of the following content: 75% of wheat flour and 25% of Jerusalem artichoke powder. Glycemic index and load were determined according to the FAO/WHO protocol. The bread contained 41.64% of water, 58.36% of dry matter, 0.27% of lipids, 8.25% of proteins, 47.64% of carbohydrates, and 6.15% of dietary fiber. Caloric value of was 226 Kcal / 100 g of bread. The glycemic index was 53.70, while glycemic load value was 7.67. The bread enriched with J. artichoke powder showed optimal nutritional and caloric value, low glycemic index and low glycemic load values. Keywords: Jerusalem artichoke, nutritional value, glycemic index, glycemic load Cite This Article: Ana M Radovanovic, Olivera Z Milovanovic, Mihailo Z Kipic, Milica B Ninkovic, and Snezana M Cupara, “Characterization of Bread Enriched with Jerusalem Artichoke Powder Content.” Journal of Food and Nutrition Research, vol.
    [Show full text]