Investigation of the Molecular Organisation of Antibacterial Insect Wing Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Molecular Organisation of Antibacterial Insect Wing Surfaces Investigation of the molecular organisation of antibacterial insect wing surfaces Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy by Song Ha Nguyen Department of Chemistry and Biotechnology Faculty of Science, Engineering, and Technology Swinburne University of Technology May 2015 ______________________________________________________________________ Abstract It has been known for some time that the surfaces of many plants and insects exhibit superhydrophobicity and self-cleaning properties. Plant leaves have been intensively studied for over a decade since the discovery of the “lotus effect”, where water droplets readily roll off the surfaces of lotus leaves. The water droplets, once landed on the surfaces of the leaves, retain their spherical shape. This arises from the superhydrophobicity of the surface. When this surface is tilted on a small angle (θtilt < 10°), the water droplets roll off the surface of the leaves, collecting all the dirt and contaminants as they go, affording the leaves the ability to ‘self-clean’. A large amount of information has been obtained regarding the surface properties of lotus leaves; however the surface properties of insects have not received as much attention in this context, despite the fact that they often present similarly effective self-cleaning properties. This work was undertaken in an effort to fill this gap in scientific knowledge. Insect wings surfaces are covered by an epicuticle layer that is composed of hydrophobic substances, which are responsible for imparting the superhydrophobic and self-cleaning properties to some species. The surfaces of dragonfly wings are covered by an array of nanopillars, which were recently discovered to have bactericidal activity. In this work, the molecular organisation of dragonfly wings was investigated to gain an insight into how the individual nanopillars were constructed and behave when coming into contact with attaching bacterial species. Over 60 different substances were identified as comprising the insect wing surfaces, including aliphatic hydrocarbons and fatty acids. The precise chemical compositions not only directly contribute to the superhydrophobic properties of the wings, but also determine their nano-architectures. A new sub-layer of the dragonfly wing epicuticle is proposed, the meso-epicuticle, which is composed only of aliphatic hydrocarbons. This meso-epicuticle is distinct from the outer- and inner-epicuticular layers. The bactericidal properties of dragonfly wings have been reported to arise purely due to physical means, and hence the surface morphologies and topographies of the dragonfly wings were characterised to investigate the nature of the mechanism(s) responsible for the bactericidal effect. The wing surfaces of two species of dragonfly, Hemianax papuensis and Diplacodes bipunctata, were investigated for this purpose. It ii was suggested that mechano-bactericidal and self-cleaning properties of the wings are two distinct mechanisms that dragonflies have developed in order to cope with bacterial contamination. Wetting and adhesion are affected by both the surface topography and surface chemistry with the presence of precisely defined topographical features resulting in bactericidal properties. Moreover, a subtle change in the morphological parameters may instead enhance the ability for the surface to self-clean. This knowledge about the relative contribution of molecular organisation and surface topology to the overall surface properties of dragonfly wings was used to inform the synthetic stage of the project. Eicosane, docosane, palmitic acid and stearic acid, all of which were found to be major components present in the epicuticular layer of dragonfly wings, were allowed to self-assemble on the surface of highly-ordered pyrolytic graphite (HOPG) to produce an ordered structure, which may replicate the antibacterial properties of dragonfly wings. Both of the alkanes assembled into ‘micro- rodlet’ type structures, while the fatty acids recrystallised into sharper ‘micro-blades’. In the case of the alkane micro-rodlets, bacterial cells coming into contact with the substrate surface containing these rodlets were found to align along the alkane crystallites. The mechanism responsible for this behaviour was determined to be a result of the air-pockets trapped between the surface structures, and hence the bacteria were limited in their colonisation to the areas of the surface that could be accessed by water. Bacterial alignment on the fatty acid interfaces was less obvious; however these surfaces were capable of killing the bacteria. The structure of the micro-blades was integral in this case; it appeared that the high radius of curvature of the sharp edge were able to rupture the bacterial cells through high stress upon contact and adhesion. The results of this study contribute to the general knowledge available on the molecular organisation of the epicuticle of dragonfly wings, with specific contribution to the surface properties of the wings, such as their superhydrophobicity, bactericidal behaviour and their ability to self-clean. The key mechanisms responsible for each of these properties were proposed to be closely related to the interplay between the wettability of the surface and the ability of the surface to retain air between the topographical structures. This study also introduced a fast and facile method of producing artificial surfaces, being the self-assembly of lipids onto ordered substrata. The resulting surfaces were found to be successful in exerting antibacterial effects both before and after bacteria attachment. iii Acknowledgements First and foremost, I would like to acknowledge and send my greatest appreciation to my primary supervisor, Professor Elena Ivanova for all of her advice and support during the course of my study. Just like a mother figure, her inspiration, motivation, and encouragement were the driving forces pushing me forward to completion of this work. She does not mind to stand up for her students whenever they are treated unfairly. Despite her busy schedule, she has always taken time to talk with me whenever I stumbled across problems, and I’m really grateful for that. Similarly, I would also like to thank Professor Russell Crawford, Professor David Mainwaring, and Dr. Peter Mahon for co-supervising the project, and for spending time helping me on various manuscripts and papers that I prepared. Being supervisors of a non-English speaking student would not be an easy job and they have always been patient with me, I really appreciate that. Special thank you to Dr. Peter Mahon, who is my supervisor and also supporter, for talking to me caringly as a friend rather than simply a teacher and I’m very thankful for that. To Vy and Hiệp, sometimes I questioned our friendships, and felt doubtful, but when I look around I always see you guys right there, and I think that’s what matters the most. I’m thankful for this confusing friendship because when I need your supports the most, you guys never fail me, and I really appreciate that. To Nguyên and Chris, you two are my rocks. Thanks for being here with me, for your co-operation in numerous impossible-sounding missions, and for your emotional support. When things are down, you guys have always brought me back to my ground. I would like to send my gratitude to Dr. Jafar Hasan, Dr. Mohammad Al Kobaisi, Dr. Vi Khanh Truong, and Dr. Hooi Jun Ng for their knowledge and assistance in operating various instruments, and techniques. Also, thank you to Veselin ‘Vanya’ Boshkovikj, you are one of the funniest guys I have ever met. You guys made my PhD life more colourful and much easier. Thank you to Dr. James Wang for his assistance in performing SEM experiments. Similarly, I would like to thank Dr. Mark Tobin and Dr. Ljiljana Puskar for helping with our work at the Australian Synchrotron, FTIR beamline; without their expertise, I would not be able to become a regular there. iv A special thanks and gratitude to chú Ngân, Soula, Savithri, Chris, Rebecca and all the laboratory technicians who have helped me throughout the course of this work. Talking to you all made me sometimes forget how tough PhD life can be. To all my friends here at Swinburne, you guys have made my every day more fun and enjoyable. I will never forget our little office where the temperature is always above 30°, with the white board where everyone writes their thoughts. It’s a pity that around the time I write all this, you guys are not around. I would rather say my thankful words out loud individually, but I’m afraid that I’ll in tears before I complete my sentences, so I send my special gratitude here, to Yến, Matt, Kaylass, Shanthi, Phong and Qudsia. To our lovely and handsome dog, Sammy. You are my mascot and on my wallpaper screen; looking at you make my days go by much easier, so if you can understand, I would like to say thanks to you. Especially, thank you to my new and current family. The word by itself says a lot how much you all mean to me. To my new family, I came along and you all took me in with your kindest hearts, treated me as part of the family, giving me support and advice which always touch my heart. To my husband, Dr. Hayden Webb, I don’t know how many words are enough to express my gratitude to you for your endless emotional support, thanks for always being by my side sharing my happiness and motivating me through the toughest times despite my difficult nature. Before being my friend, my husband, you are my senior, my teacher who does not mind to be harsh to me for my improvement. Con muốn gửi những lời cám ơn sâu sắc nhất tới ba, mẹ và bé Ngân. Con khô khan, nhưng con hy vọng mọi người hiểu được là con mang ơn mọi người như thế nào. Sự hy sinh thầm lặng của mẹ luôn là động lực vực con đứng dậy trong ư4ng tháng ngày khó khăn.
Recommended publications
  • Mechanism of the Wing Colouration in the Dragonfly Zenithoptera Lanei
    Journal of Insect Physiology 81 (2015) 129–136 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication ⇑ Rhainer Guillermo-Ferreira a,b,c, , Pitágoras C. Bispo b, Esther Appel c, Alexander Kovalev c, Stanislav N. Gorb c a Department of Hydrobiology, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, São Paulo, Brazil b Department of Biological Sciences, São Paulo State University, Av. Dom Antônio 2100, Assis, São Paulo, Brazil c Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany article info abstract Article history: Zenithoptera dragonflies are known for their remarkable bluish colouration on their wings and unique Received 29 July 2014 male behaviour of folding and unfolding their wings while perching. However, nothing is known about Received in revised form 14 July 2015 the optical properties of such colouration and its structural and functional background. In this paper, Accepted 15 July 2015 we aimed to study the relationship between the wing membrane ultrastructure, surface microstructure Available online 17 July 2015 and colour spectra of male wings in Zenithoptera lanei and test the hypothesis that colouration functions as a signal in territorial fights between males. The results show that the specific wing colouration derives Keywords: from interference in alternating layers of melanized and unmelanized cuticle in the wing membrane, Colour combined with diffuse scattering in two different layers of wax crystals on the dorsal wing surface, Optics Iridescence one lower layer of long filaments, and one upper layer of leaf-shaped crystals.
    [Show full text]
  • The Superfamily Calopterygoidea in South China: Taxonomy and Distribution. Progress Report for 2009 Surveys Zhang Haomiao* *PH D
    International Dragonfly Fund - Report 26 (2010): 1-36 1 The Superfamily Calopterygoidea in South China: taxonomy and distribution. Progress Report for 2009 surveys Zhang Haomiao* *PH D student at the Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Email: [email protected] Introduction Three families in the superfamily Calopterygoidea occur in China, viz. the Calo- pterygidae, Chlorocyphidae and Euphaeidae. They include numerous species that are distributed widely across South China, mainly in streams and upland running waters at moderate altitudes. To date, our knowledge of Chinese spe- cies has remained inadequate: the taxonomy of some genera is unresolved and no attempt has been made to map the distribution of the various species and genera. This project is therefore aimed at providing taxonomic (including on larval morphology), biological, and distributional information on the super- family in South China. In 2009, two series of surveys were conducted to Southwest China-Guizhou and Yunnan Provinces. The two provinces are characterized by karst limestone arranged in steep hills and intermontane basins. The climate is warm and the weather is frequently cloudy and rainy all year. This area is usually regarded as one of biodiversity “hotspot” in China (Xu & Wilkes, 2004). Many interesting species are recorded, the checklist and photos of these sur- veys are reported here. And the progress of the research on the superfamily Calopterygoidea is appended. Methods Odonata were recorded by the specimens collected and identified from pho- tographs. The working team includes only four people, the surveys to South- west China were completed by the author and the photographer, Mr.
    [Show full text]
  • East Gippsland, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Zoo Og Cal S Ryey of I Dia
    M l CELLANEOUS P BLI ATIO~ OCCA (0 AL PAPER O. 20 I ecords of the Zoo og cal S ryey of I dia FIELD ECOLOGY, ZOOGEOGRAPHY AND TAXONOMY OF THE ODONATA OF WESTERN HIMALAYA, INDIA By ARUN KUMAR AND MAHA8IR PRASAD Issued by the Director Zoo1ogical Survey of India, Calcutta RECORDS OFTHE Zoological Survey of India MISCELLANEOUS PUBLICATION OCCASIONAL PAPER NO. 20 FIELD ECOLOGY, ZOOGEOGRAPHY AND TAXONOMY OF THE ODONATA OF WESTERN HIMALAYA, INDIA By AruD Kumar and Mababir Prasad Northern Regional Station, Zoological Survey of Inelia, Dellra D,u, Edited by the Director, Zoological Survey of India, ('a/cult" 1981 © Copyright 1981. Government of India Published in March, 1981 PRICE: Inland: Rs. 40.00 Foreign: £ 4.50 $ 12.00 Printed in Indi~ at SAAKHHAR MUDRAN 4 Deshapran Shasmal Road Calcutta 700 033 and Published by the Controller of Publications. Civil Lines, Delhi 110006 RECORDS OFTHE Zoological Survey of India MISCELLANEOUS PUBLICATION Occasional Paper No. 20 1981 Pages 1-118 CONTENTS Page No. INTRODUCTION 1 GEOGRAPHICAL FEATURES, DIVISIONS AND CLIMATE OF WESTERN HIMALAYA 4 BRIEF DESCRIPTION OF TYPICAL OOONATA BIOTOPES IN WESTERN HIMALAYA 5 PHENOLOGY 8 KEY TO THE ODONATA OF WESTERN HIMALAYA 9 CHECK-LIST OF OOONATA OF WESTERN HIMALAYA WITH NOTES ON FIELD ECOLOGY 32 ZOOGEOGRAPHY OF ODONATA OF WESTERN HIMALAYA 67 SUMMARY 72 REFERENCES 98 FIELD ECOLOGV, ZOOGEOGRAPHY AND TAXONOMY OF THE ODONATA OF WESTERN HIMALAYA, INDIA By ARUN KUMAR AND MAHABIR PRASAD": Northern Regional Station, Zoological Survey of India, Dehra Dun (With 13 Text figures, 1 Plate and 3 Tables) INTRODUCTION Within the Indian sub-region, the Odonata Fauna of Himalaya has so far been studied most extensively.
    [Show full text]
  • A Decrease in Endemic Odonates in the Ogasawara Islands, Japan
    「森林総合研究所研究報告」(Bulletin of FFPRI), Vol.4, No.1 (No.394), 45 - 51, Mar. 2005 論 文(Original article) A decrease in endemic odonates in the Ogasawara Islands, Japan YOSHIMURA Mayumi 1)* and OKOCHI Isamu 2) Abstract There are many endemic species in the Japanese Ogasawara Islands. However, many of these endemic species are likely to disappear as a result of reduction of habitat and the introduction of exotic species. Odonates are included within this category of species at risk. If the decrease in endemic odonates is due to a decrease in aquatic habitat, we have only to provide arti” fi cial ponds to conserve these species. In this study, we provided artifi cial ponds as a habitat for odonates in Chichi-jima and Ani-jima, Ogasawara Islands. We then examined the possibility of protection and enhancement of odonate populations. Endemic odonates were found in the natural ponds of Ani-jima and Ototo-jima. In Ani-jima, they could be collected both in the artifi cial and natural ponds. The artifi cial pond could provide habitat for endemic odonates. However, in Chichi-jima, few odonates could be collected both in the artifi cial and natural ponds. Here, invasive species, such as Gambusia affi nis and Anolis carolinensis, are found, which considered to prey upon odonate larvae and adults. Extermination of invasive species may be necessary to conserve the endemic odonates in Chichi-jima. Key words : Anolis carolinensis, endemic species, oceanic islands, odonates, Ogasawara Islands, predator, conservation Introduction in Chichi-jima. In Japan, the Ogasawara Islands consist of many This decline has been blamed on environmental small islands, including Chichi-jima, Ani-jima, Ototo- destruction.
    [Show full text]
  • The Value of Urban Ponds for Odonata and Plant Biodiversity
    The Value of Urban Ponds for Odonata and Plant Biodiversity Mary Ann Perron Thesis submitted to the School of Graduate Studies and Research University of Ottawa In partial fulfillment of the requirements for the Doctor of Philosophy (Ph.D.) degree in the Department of Biology, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5 Thèse soumise à l’École des Études Supérieures et de la Recherche Université d’Ottawa En vue de l’obtention du diplôme de doctorat (Ph.D.) au Département de Biologie, Université d’Ottawa, Ottawa, Ontario, Canada, K1N 6N5 Mary Ann Perron, Ottawa, Canada, 2020 I dedicate this thesis to my father, Jules Perron, who is my biggest inspiration. I love you dad. ii Abstract Urbanization involves the conversion of natural areas to impervious surfaces, which can lead to an increase in the frequency and severity of flood events in cities. To mitigate flood risk, stormwater ponds are constructed to manage urban runoff. Stormwater ponds can also be colonized by wildlife, but their suitability as habitat is disputed due to potential toxicological risks. This study assessed the suitability of stormwater ponds as habitat for the bioindicators Odonata (dragonflies and damselflies) and determined environmental factors that impact their community structure. Odonata (adults, nymphs and exuviae) were sampled at 41 stormwater ponds and 10 natural reference ponds across the National Capital Region of Canada, with a subset of ponds sampled over four years (2015-2018). Plant communities, water quality and surrounding land cover were analyzed at each pond to determine their impacts on Odonata community structure. Overall, stormwater ponds had lower Odonata abundance and a greater variation in species richness and community structure compared to natural ponds but had comparable dragonfly reproduction rates.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Accepted Version (PDF 1MB)
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Hasan, Jafar, Roy, Anindo, Chatterjee, Kaushik, & Yarlagadda, Prasad (2019) Mimicking insect wings: The roadmap to bioinspiration. ACS Biomaterials Science and Engineering, 5(7), pp. 3139-3160. This file was downloaded from: https://eprints.qut.edu.au/131248/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1021/acsbiomaterials.9b00217 Page 1 of 57 ACS Biomaterials Science & Engineering 1 2 3 4 5 Mimicking Insect Wings: The Roadmap to 6 7 8 9 10 Bio-inspiration 11 12 13 14 15 Jafar Hasan1, Anindo Roy2, Kaushik Chatterjee2, Prasad KDV Yarlagadda1 16 17 18 1Science and Engineering Faculty, Queensland University of Technology, 2 George Street, 19 20 Brisbane, QLD 4001, Australia 21 22 23 2Department of Materials Engineering, Indian Institute of Science, C.V.
    [Show full text]
  • Two Remarkable Fossil Insect Larvae from Burmese Amber Suggest the Presence of a Terminal Filum in the Direct Stem Lineage of Dragonflies and Damselflies (Odonata)
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 13-35. March 2020 TWO REMARKABLE FOSSIL INSECT LARVAE FROM BURMESE AMBER SUGGEST THE PRESENCE OF A TERMINAL FILUM IN THE DIRECT STEM LINEAGE OF DRAGONFLIES AND DAMSELFLIES (ODONATA) MARIO SCHÄDEL1*, PATRICK MÜLLER2 & JOACHIM T. HAUG1,3 1*Corresponding author. Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. E-mail: [email protected] 2Friedhofstr. 9, 66894 Käshofen, Germany. E-mail: [email protected] 3GeoBio-Center of the LMU Munich, Richard-Wagner-Str. 10, 80333 Munich, Germany. E-mail: [email protected] To cite this article: Schädel M., Müller P. & Haug J.T. (2020) - Two remarkable fossil insect larvae from Burmese amber suggest the presence of a terminal filum in the direct stem lineage of dragonflies and damselflies (Odonata). Riv. It. Paleontol. Strat., 126(1): 13-35. Keywords: character evolution; Cretaceous; moult; Myanmar; Odonatoptera; ontogeny. Abstract. The fossil record of dragonfly relatives (Odonatoptera) dates back to the Carboniferous, yet knowl- edge about these extinct animals is meagre. For most of the species little is known except for the characteristics of the wing venation. As a result, it is difficult to include fossil larvae in a (wing character based) phylogenetic tree as the wing venation is not visible in most of the larval instars. Two larval specimens from Cretaceous Burmese amber are in the focus of this study. The two specimens likely represent two subsequent early stage larval instars of the same individual. Not only is this an exceptional case to study ontogenetic processes in fossils – the larval instars are morphologically completely different from all known larvae of Odonata with respect to the posterior abdominal region.
    [Show full text]
  • Insects and Other Arthropods from Kwajalein Atoll (Marshall Islands)
    Vol. XXI, No. 2, December, 1972 271 Insects and other Arthropods from Kwajalein Atoll (Marshall Islands) Bernard B. Sugerman U. S. ARMY, HAWAII Kwajalein Atoll is located in the Ralik (Sunset or Western) Chain of the Marshall Islands in the West Central Pacific Ocean. It is 2100 nautical miles southwest of San Francisco. Lying less than 700 miles north of the Equator, Kwajalein is in the latitude of Panama and the southern Philippines; it is in the longitude of New Zealand, 2300 miles south, and the Kamchatka Peninsula, USSR, 2600 miles north. Kwajalein Atoll is of coral reef formation in the shape of a crescent loop enclosing a lagoon. Situated on the reef are approximately 100 small islands, with a total land area of only 5.6 square miles (3584 acres). The three largest islets, Kwajalein (1.2 square miles), Roi-Namur and Ebadon, at the extremities of the Atoll, account for nearly half the total land area. While the typical size of the remaining isles may be about 140 by 225 m, the smallest islands are no more than sand cays that merely break the water's surface at high tide. The lagoon enclosed by the reef is the world's largest lagoon, having a surface area of 902 square miles. The Atoll's longest dimension is 75 miles from Kwajalein to Ebadon, and its average width is about 15 miles. Kwajalein Islet at the Atoll's southern tip and Roi-Namur at its northern extremity are 50 miles apart. All islets are flat and few natural points exceed 15 feet above mean sea level; those which do are sand dunes.
    [Show full text]
  • Pagan Island, Mariana Islands
    Aquatic Insect Surveys on Pagan Island, Mariana Islands FRESHWATER AND MARINE INSECT SURVEYS ON PAGAN ISLAND, MARIANA ISLANDS DAN A. POLHEMUS U. S. Fish & Wildlife Service Pacific Islands Fish & Wildlife Office Honolulu, HI Final Report 15 November 2010 Prepared for U. S. Fish & Wildlife Service Pacific Islands Fish & Wildlife Office Honolulu, HI Cover picture: Pagan Island seen from the southeast, with the Sengao Peninsula in the foreground, and active Mt. Pagan (570 m.) in the background (D. A. Polhemus photo). 2 Aquatic Insect Surveys on Pagan Island, Mariana Islands Fig. 1. Aerial view of Pagan as seen looking south from above Lake Sanhiyon. The Bandeera Peninsula is visible in the middle distance. The prominent mountain massif in the center of the picture consists of the twin peaks of Mt. Maru and Mt. Togari. The highest peaks on the island, lying beyond to the south, are un-named on current topographic maps. Note the plume of low salinity water from the inflow springs cutting at an angle across the lake surface the in the lower right hand portion of the picture. EXECUTIVE SUMMARY The island of Pagan, one of the largest in the Northern Marianas, lacks perennial streams but possesses an interesting set of lentic ecosystems, including two mixohaline lakes lying at differing elevations, and a tidally influenced, diurnally transient freshwater wetland. The island also features diverse intertidal systems on its rugged coastlines with tide pools formed in both basalt and limestone exposures. Collections of aquatic insects were made from these inland water and intertidal habitats at 8 sampling stations ranging in elevation from 0–15 m.
    [Show full text]
  • Photographing and Identifying Dragonflies in Central Victoria Reiner Richter
    Photographing and Identifying Dragonflies in Central Victoria Reiner Richter http://rnr.id.au Notes from the presentation for the Bendigo Field Naturalists Club, August 2014. Introduction I had always enjoyed photography, had a disposable camera as a child and took photography classes in high school. It wasn't until I got my first digital camera in late 2001 that I started taking lots of photos. I photograph anything in nature that I find interesting, including dragonflies, which is what I'll be covering here. These days I take mostly macro photos. In the beginning I wasn't trying to identify much but after several years came in contact with a few people over the internet that had an interest in Victorian dragonflies in particular and they helped me out. It was good to start in a reduced region with limited species rather than, for example, having to sift through more than 300 species found throughout Australia. It however still took me another 5 years before I started confidently being able to identify most of Victoria's 75 or so species. In this presentation I will discuss how I go about chasing them and detail some species found in central Victoria. Photographing Odonata Usually the first dragonfly I encounter each season is Diplacodes bipunctata (Wanderin percher), often while out looking at wildflowers in central Victoria in spring. Photographing dragonflies is a lot easier when the insect is perched so this species is quite accommodating. I almost always take photos free-hand as stalking small animals with a tripod is just too impracticle.
    [Show full text]