A Decrease in Endemic Odonates in the Ogasawara Islands, Japan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Foraging Behavior of Anax Junius (Odonata: Aeschnidae) and Its Potential As a Behavioral Endpoint in Pesticide Testing Sandra Kaye Brewer Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 The foraging behavior of Anax junius (Odonata: Aeschnidae) and its potential as a behavioral endpoint in pesticide testing Sandra Kaye Brewer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Environmental Sciences Commons, Fresh Water Studies Commons, Toxicology Commons, and the Zoology Commons Recommended Citation Brewer, Sandra Kaye, "The foraging behavior of Anax junius (Odonata: Aeschnidae) and its potential as a behavioral endpoint in pesticide testing " (1997). Retrospective Theses and Dissertations. 11445. https://lib.dr.iastate.edu/rtd/11445 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. UMI MICROFILMED 1997 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fiice, while others may be from any type of computer printer. The quality of this reprcduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
The Superfamily Calopterygoidea in South China: Taxonomy and Distribution. Progress Report for 2009 Surveys Zhang Haomiao* *PH D
International Dragonfly Fund - Report 26 (2010): 1-36 1 The Superfamily Calopterygoidea in South China: taxonomy and distribution. Progress Report for 2009 surveys Zhang Haomiao* *PH D student at the Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Email: [email protected] Introduction Three families in the superfamily Calopterygoidea occur in China, viz. the Calo- pterygidae, Chlorocyphidae and Euphaeidae. They include numerous species that are distributed widely across South China, mainly in streams and upland running waters at moderate altitudes. To date, our knowledge of Chinese spe- cies has remained inadequate: the taxonomy of some genera is unresolved and no attempt has been made to map the distribution of the various species and genera. This project is therefore aimed at providing taxonomic (including on larval morphology), biological, and distributional information on the super- family in South China. In 2009, two series of surveys were conducted to Southwest China-Guizhou and Yunnan Provinces. The two provinces are characterized by karst limestone arranged in steep hills and intermontane basins. The climate is warm and the weather is frequently cloudy and rainy all year. This area is usually regarded as one of biodiversity “hotspot” in China (Xu & Wilkes, 2004). Many interesting species are recorded, the checklist and photos of these sur- veys are reported here. And the progress of the research on the superfamily Calopterygoidea is appended. Methods Odonata were recorded by the specimens collected and identified from pho- tographs. The working team includes only four people, the surveys to South- west China were completed by the author and the photographer, Mr. -
Northland Lakes Water Quality and Ecology State and Trends 2007-2011
Northland Lakes water quality and ecology State and trends 2007-2011 2 Northland Lakes water quality and ecology State and trends 2007-2011 John Ballinger Emma Simpson Carol Nicholson Jean-Charles Perquin September 2013 3 Executive Summary The Northland region has a large number of lakes, a large proportion of which were formed by dune activity and are classed as dune lakes. Many Northland Lakes are of national importance representing some of the few remaining lakes with intact native flora and containing a number of rare and endangered plant and animal species. This report is a companion report to the five yearly State of the Environment Report 2012, detailing the state and trends of water quality for 28 lakes in the current Northland lake monitoring network from 2007 to 2011. The report also provides a summary of relevant ecological data from the annual report produced by the National Institute of Water and Atmospherics (NIWA) which updates the ecological status of 86 lakes in the Northland region (Wells & Champion, 2011). Both the water quality and ecological data was used to develop the Northland Lake Monitoring Strategy (Champion, de Winter 2012) which aims to prevent the deterioration of water quality and biodiversity values in Northland’s lakes and help to restore these valuable ecosystems. Water quality state is measured using the nationally recognised indicators Lake Trophic Level Index (TLI) and Lake Submerged Plant Indicator (LakeSPI). Trend analysis was carried out on all variables with more than three years’ worth of data. A Biodiversity Assessment gives each lake an overall ranking taking into account many indicators including water quality, endangered species identified, wetland extent, species composition, submerged vegetation abundance and composition (including the Lake SPI), water birds, fish and aquatic invertebrate presence and abundance (Wells and Chapman, 2011). -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Accepted Version (PDF 1MB)
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Hasan, Jafar, Roy, Anindo, Chatterjee, Kaushik, & Yarlagadda, Prasad (2019) Mimicking insect wings: The roadmap to bioinspiration. ACS Biomaterials Science and Engineering, 5(7), pp. 3139-3160. This file was downloaded from: https://eprints.qut.edu.au/131248/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1021/acsbiomaterials.9b00217 Page 1 of 57 ACS Biomaterials Science & Engineering 1 2 3 4 5 Mimicking Insect Wings: The Roadmap to 6 7 8 9 10 Bio-inspiration 11 12 13 14 15 Jafar Hasan1, Anindo Roy2, Kaushik Chatterjee2, Prasad KDV Yarlagadda1 16 17 18 1Science and Engineering Faculty, Queensland University of Technology, 2 George Street, 19 20 Brisbane, QLD 4001, Australia 21 22 23 2Department of Materials Engineering, Indian Institute of Science, C.V. -
Two Remarkable Fossil Insect Larvae from Burmese Amber Suggest the Presence of a Terminal Filum in the Direct Stem Lineage of Dragonflies and Damselflies (Odonata)
Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 13-35. March 2020 TWO REMARKABLE FOSSIL INSECT LARVAE FROM BURMESE AMBER SUGGEST THE PRESENCE OF A TERMINAL FILUM IN THE DIRECT STEM LINEAGE OF DRAGONFLIES AND DAMSELFLIES (ODONATA) MARIO SCHÄDEL1*, PATRICK MÜLLER2 & JOACHIM T. HAUG1,3 1*Corresponding author. Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. E-mail: [email protected] 2Friedhofstr. 9, 66894 Käshofen, Germany. E-mail: [email protected] 3GeoBio-Center of the LMU Munich, Richard-Wagner-Str. 10, 80333 Munich, Germany. E-mail: [email protected] To cite this article: Schädel M., Müller P. & Haug J.T. (2020) - Two remarkable fossil insect larvae from Burmese amber suggest the presence of a terminal filum in the direct stem lineage of dragonflies and damselflies (Odonata). Riv. It. Paleontol. Strat., 126(1): 13-35. Keywords: character evolution; Cretaceous; moult; Myanmar; Odonatoptera; ontogeny. Abstract. The fossil record of dragonfly relatives (Odonatoptera) dates back to the Carboniferous, yet knowl- edge about these extinct animals is meagre. For most of the species little is known except for the characteristics of the wing venation. As a result, it is difficult to include fossil larvae in a (wing character based) phylogenetic tree as the wing venation is not visible in most of the larval instars. Two larval specimens from Cretaceous Burmese amber are in the focus of this study. The two specimens likely represent two subsequent early stage larval instars of the same individual. Not only is this an exceptional case to study ontogenetic processes in fossils – the larval instars are morphologically completely different from all known larvae of Odonata with respect to the posterior abdominal region. -
Insects and Other Arthropods from Kwajalein Atoll (Marshall Islands)
Vol. XXI, No. 2, December, 1972 271 Insects and other Arthropods from Kwajalein Atoll (Marshall Islands) Bernard B. Sugerman U. S. ARMY, HAWAII Kwajalein Atoll is located in the Ralik (Sunset or Western) Chain of the Marshall Islands in the West Central Pacific Ocean. It is 2100 nautical miles southwest of San Francisco. Lying less than 700 miles north of the Equator, Kwajalein is in the latitude of Panama and the southern Philippines; it is in the longitude of New Zealand, 2300 miles south, and the Kamchatka Peninsula, USSR, 2600 miles north. Kwajalein Atoll is of coral reef formation in the shape of a crescent loop enclosing a lagoon. Situated on the reef are approximately 100 small islands, with a total land area of only 5.6 square miles (3584 acres). The three largest islets, Kwajalein (1.2 square miles), Roi-Namur and Ebadon, at the extremities of the Atoll, account for nearly half the total land area. While the typical size of the remaining isles may be about 140 by 225 m, the smallest islands are no more than sand cays that merely break the water's surface at high tide. The lagoon enclosed by the reef is the world's largest lagoon, having a surface area of 902 square miles. The Atoll's longest dimension is 75 miles from Kwajalein to Ebadon, and its average width is about 15 miles. Kwajalein Islet at the Atoll's southern tip and Roi-Namur at its northern extremity are 50 miles apart. All islets are flat and few natural points exceed 15 feet above mean sea level; those which do are sand dunes. -
Pagan Island, Mariana Islands
Aquatic Insect Surveys on Pagan Island, Mariana Islands FRESHWATER AND MARINE INSECT SURVEYS ON PAGAN ISLAND, MARIANA ISLANDS DAN A. POLHEMUS U. S. Fish & Wildlife Service Pacific Islands Fish & Wildlife Office Honolulu, HI Final Report 15 November 2010 Prepared for U. S. Fish & Wildlife Service Pacific Islands Fish & Wildlife Office Honolulu, HI Cover picture: Pagan Island seen from the southeast, with the Sengao Peninsula in the foreground, and active Mt. Pagan (570 m.) in the background (D. A. Polhemus photo). 2 Aquatic Insect Surveys on Pagan Island, Mariana Islands Fig. 1. Aerial view of Pagan as seen looking south from above Lake Sanhiyon. The Bandeera Peninsula is visible in the middle distance. The prominent mountain massif in the center of the picture consists of the twin peaks of Mt. Maru and Mt. Togari. The highest peaks on the island, lying beyond to the south, are un-named on current topographic maps. Note the plume of low salinity water from the inflow springs cutting at an angle across the lake surface the in the lower right hand portion of the picture. EXECUTIVE SUMMARY The island of Pagan, one of the largest in the Northern Marianas, lacks perennial streams but possesses an interesting set of lentic ecosystems, including two mixohaline lakes lying at differing elevations, and a tidally influenced, diurnally transient freshwater wetland. The island also features diverse intertidal systems on its rugged coastlines with tide pools formed in both basalt and limestone exposures. Collections of aquatic insects were made from these inland water and intertidal habitats at 8 sampling stations ranging in elevation from 0–15 m. -
Photographing and Identifying Dragonflies in Central Victoria Reiner Richter
Photographing and Identifying Dragonflies in Central Victoria Reiner Richter http://rnr.id.au Notes from the presentation for the Bendigo Field Naturalists Club, August 2014. Introduction I had always enjoyed photography, had a disposable camera as a child and took photography classes in high school. It wasn't until I got my first digital camera in late 2001 that I started taking lots of photos. I photograph anything in nature that I find interesting, including dragonflies, which is what I'll be covering here. These days I take mostly macro photos. In the beginning I wasn't trying to identify much but after several years came in contact with a few people over the internet that had an interest in Victorian dragonflies in particular and they helped me out. It was good to start in a reduced region with limited species rather than, for example, having to sift through more than 300 species found throughout Australia. It however still took me another 5 years before I started confidently being able to identify most of Victoria's 75 or so species. In this presentation I will discuss how I go about chasing them and detail some species found in central Victoria. Photographing Odonata Usually the first dragonfly I encounter each season is Diplacodes bipunctata (Wanderin percher), often while out looking at wildflowers in central Victoria in spring. Photographing dragonflies is a lot easier when the insect is perched so this species is quite accommodating. I almost always take photos free-hand as stalking small animals with a tripod is just too impracticle. -
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results .............................................................................................................. -
Richness and Diversity of Odonates of the Agricultural College and Research Institute, Vazhavachanur, Tamilnadu, India
#0# Acta Biologica 27/2020 | www.wnus.edu.pl/ab | DOI: 10.18276/ab.2020.27-06 | strony 57–65 Richness and diversity of odonates of the agricultural college and research institute, Vazhavachanur, Tamilnadu, India Vaithiyanathan Radhakrishnan,1 Ramanathan Arulprakash,2 Iyappan Parivarthani,3 Selvarasu Ponnivalavan,3 Mohan Priyadharshini,3 Muthaiyan Pandiyan4 1 Agricultural College and Research Institute, Vazhavachanur – 606 753, Thiruvannamalai District, Tamil Nadu, India 2 Seeds Centre, Tamil Nadu Agricultural University, Coimbatore – 641 003, Tamil Nadu, India 3 Agricultural College and Research Institute, Vazhavachanur – 606 753, Thiruvannamalai District, Tamil Nadu, India 4 Agricultural College and Research Institute, Vazhavachanur – 606 753, Thiruvannamalai District, Tamil Nadu, India Corresponding Authora e-mail: [email protected], [email protected] Keywords Vazhavachanur, Dragonfly, Damselfy, Libellulidae and Coenagrionidae Abstract Investigations on the diversity of Odonata in and around the Agricultural College and Research Institute, Vazhavachanur, Tamil Nadu, India were studied. Eight locations were selected, of which sixteen Odonata species were recorded. In total, eleven dragonfly and five damselfly species were identified from Thiruvannamalai district, Tamil Nadu, India.Pantala flavescens, Diplacodes trivialis, Brachythemis contaminata and Ischnura aurora were recorded from all eight locations. Trithemis pallidinervis and Agriocnemis pygmaea were recorded from seven locations except from the farm pond and the open stretch area. Rhyothemis variegata was recorded only at the open stretch area. The results clearly show that, Odonates have specific habitat preferences for their growth and development. Four families Libellulidae, Gomphidae, Aeshnidae and Coenagrionidae were observed and collected during the study. Libellulidae were the most abundant family (56.25%) and comprised of 9 species, followed by Coenagrionidae (31.25%) with 5 species. -
Identification Guide to the Australian Odonata Australian the to Guide Identification
Identification Guide to theAustralian Odonata www.environment.nsw.gov.au Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW National Library of Australia Cataloguing-in-Publication data Theischinger, G. (Gunther), 1940– Identification Guide to the Australian Odonata 1. Odonata – Australia. 2. Odonata – Australia – Identification. I. Endersby I. (Ian), 1941- . II. Department of Environment and Climate Change NSW © 2009 Department of Environment, Climate Change and Water NSW Front cover: Petalura gigantea, male (photo R. Tuft) Prepared by: Gunther Theischinger, Waters and Catchments Science, Department of Environment, Climate Change and Water NSW and Ian Endersby, 56 Looker Road, Montmorency, Victoria 3094 Published by: Department of Environment, Climate Change and Water NSW 59–61 Goulburn Street Sydney PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131555 (information & publication requests) Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au The Department of Environment, Climate Change and Water NSW is pleased to allow this material to be reproduced in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. ISBN 978 1 74232 475 3 DECCW 2009/730 December 2009 Printed using environmentally sustainable paper. Contents About this guide iv 1 Introduction 1 2 Systematics