Here Damselflies, on the Other Hand, Look Else in the World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagnostic Efficacy of Morphological Characters of Larval Tramea Lacerata Hagen and Tramea Onusta Hagen (Odonata: Libellulidae) in the Prairie Region of Missouri
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Valparaiso University The Great Lakes Entomologist Volume 38 Numbers 3 & 4 - Fall/Winter 2005 Numbers 3 & Article 9 4 - Fall/Winter 2005 October 2005 Diagnostic Efficacy of Morphological Characters of Larval Tramea Lacerata Hagen and Tramea Onusta Hagen (Odonata: Libellulidae) in the Prairie Region of Missouri Brett H. P Landwer University of Missouri Robert W. Sites University of Missouri Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Landwer, Brett H. P and Sites, Robert W. 2005. "Diagnostic Efficacy of Morphological Characters of Larval Tramea Lacerata Hagen and Tramea Onusta Hagen (Odonata: Libellulidae) in the Prairie Region of Missouri," The Great Lakes Entomologist, vol 38 (2) Available at: https://scholar.valpo.edu/tgle/vol38/iss2/9 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Landwer and Sites: Diagnostic Efficacy of Morphological Characters of Larval <i>Tram 2005 THE GREAT LAKES ENTOMOLOGIST 155 DIAGNOSTIC EFFICACY OF MORPHOLOGICAL CHARACTERS OF LARVAL TRAMEA LACERATA HAGEN AND TRAMEA ONUSTA HAGEN (ODONATA: LIBELLULIDAE) IN THE PRAIRIE REGION OF MISSOURI Brett H. P. Landwer1 and Robert W. Sites1 ABSTRACT Distinguishing among species of larvae of the dragonfly genus Tramea historically has been problematic, largely due to conflicting characterizations of the larvae of T. -
Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Spatiotemporal pattern of phenology across geographic gradients in insects Khelifa, Rassim Abstract: Phenology – the timing of recurrent biological events – influences nearly all aspects of ecology and evolution. Phenological shifts have been recorded in a wide range of animals and plants worldwide during the past few decades. Although the phenological responses differ between taxa, they may also vary geographically, especially along gradients such as latitude or elevation. Since changes in phenology have been shown to affect ecology, evolution, human health and the economy, understanding pheno- logical shifts has become a priority. Although phenological shifts have been associated with changes in temperature, there is still little comprehension of the phenology-temperature relationship, particularly the mechanisms influencing its strength and the extent to which it varies geographically. Such ques- tions would ideally be addressed by combining controlled laboratory experiments on thermal response with long-term observational datasets and historical temperature records. Here, I used odonates (drag- onflies and damselflies) and Sepsid scavenger flies to unravel how temperature affects development and phenology at different latitudes and elevations. The main purpose of this thesis is to provide essential knowledge on the factors driving the spatiotemporal phenological dynamics by (1) investigating how phenology changed in time and space across latitude and elevation in northcentral Europe during the past three decades, (2) assessing potential temporal changes in thermal sensitivity of phenology and (3) describing the geographic pattern and usefulness of thermal performance curves in predicting natural responses. -
Using Specimens from the Past to Understand the Living World Through Digitization
Using specimens from the past to understand the living world through digitization Drs. Jessica L. Ware, William Kuhn, Dirk Gassmann and John Abbott Rutgers University, Newark Dragonflies: Order Odonata Suborders Anisoptera (unequal wings): Dragonflies ~3000 species Anisozygoptera ~3 species Zygoptera: Damselflies ~3000 species Perchers, Fliers, Migrators, & Homebodies Dragonfly flight Wing venation affects wing camber, lift, and ultimately flight patterns Dragonfly flight Stiffness varies along length of the wing with vein density and thickness Dragonfly flight Certain wing traits are correlated with specific flight styles Dragonfly collections: invaluable treasures Collection name # spp. #specimens Florida State Collection 2728 150K Ware Lab Collection 373 4K Smithsonian Collection 253 200K M.L. May Collection 300 10K Dragonfly collections: invaluable treasures Harness information in collections Targeted Odonata Wing Digitization (TOWD) project TOWD project scanning protocol TOWD project scanning protocol TOWD project TOWD project TOWD project 10 10 TOWD project More information at: https://willkuhn.github.io/towd/ Aspect ratios: How elongate is the wing compared to its overall area? • High Aspect ratio Low Aspect ratio Long narrow wings, Wing Short broad wings, optimized for: Wing optimized long-distance flight for: Maneuverability, turning High Aspect Low Aspect Ratio Ratio More data on aspect ratios, better interpretations? 2007: Hand measured forewings of 85 specimens, 7 months work More data on apsect ratios, better interpretations? 2007: Hand measured forewings of 85 specimens, 7 months 2019: Odomatic measurements for 206 work specimens, 2-3 minutes of work! Are there differences in aspect ratios? Perchers have significantly lower aspect ratios than fliers. The p-value is .001819. The result is significant at p < .05. -
Gleaning on Coreidae (Heteroptera) by Tachopteryx Thoreyi (Odonata: Petaluridae)
The Great Lakes Entomologist Volume 31 Numbers 3 & 4 - Fall/Winter 1998 Numbers 3 & Article 12 4 - Fall/Winter 1998 October 1998 Gleaning on Coreidae (Heteroptera) by Tachopteryx Thoreyi (Odonata: Petaluridae) R. D. Waltz IDNR Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Waltz, R. D. 1998. "Gleaning on Coreidae (Heteroptera) by Tachopteryx Thoreyi (Odonata: Petaluridae)," The Great Lakes Entomologist, vol 31 (3) Available at: https://scholar.valpo.edu/tgle/vol31/iss3/12 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Waltz: Gleaning on Coreidae (Heteroptera) by <i>Tachopteryx Thoreyi</i> 1998 THE GREAT LAKES ENTOMOLOGIST 209 GLEANING ON COREIDAE (HETEROPTERA) BY TACHOPTERYX THOREYI (ODONATA: PETALURIDAEl R.D. Woltz 1 Tachopteryx thoreyi (Hagen in Selys) is an uncommon or rare, fen and seep dwelling dragonfly noted for its large size, restricted habitat require ments, and characteristic habit of perching on tree trunks. While performing insect sampling and habitat assessments in a fen at Mounds State Park, Anderson, Indiana, I observed a male T. thoreyi land on a tree trunk and capture an insect on the bark of the tree, 1 June 1998, at approximately 1430 hr. Upon approaching and capturing the dragonfly, I found that it had captured and held in its grasp a large leaf-footed bug, prob ably Acanthocephala terminalis (Dallas) (Heteroptera: Coreidae). -
Wetlands Resource Has Been Developed to Encourage You and Your Class to Visit Wetlands in Your ‘Backyard’
WETLANDS for Education in the West Coast Tai Poutini Conservancy January 2005 Edition 2 WETLANDS for Education in the West Coast Tai Poutini Conservancy ACKNOWLEDGEMENTS A large number of people have been involved in the production and editing of this resource. We would like to thank them all and in particular the following: Area and Conservancy staff, especially Philippe Gerbeaux for their comments and assistance. Te Rüanga o Ngäi Tahu, Te Rünaka o Makäwhio and Te Rünaka o Ngäti Waewae for their comments and assistance through Rob Tipa. Compiled by Chrisie Sargent, Sharleen Hole and Kate Leggett Edited by Sharleen Hole and Julie Dutoit Illustrations by Sue Asplin ISBN 0-478-22656-X 2nd Edition January 2005 Published by: Department of Conservation Greymouth Mawheranui Area Office PO Box 370 Greymouth April 2004 CONTENTS USING THIS RESOURCE 5 THE CURRICULUM 5 WHY WETLANDS? 8 RAMSAR CONVENTION 9 SAFETY 9 BE PREPARED ACTIVITY 10 PRE VISIT ACTIVITIES 11 POST VISIT ACTIVITIES 12 FACT SHEETS What is a wetland? 15 Types of wetlands 17 How wetlands change over time 19 Threats to wetlands 21 Wetland uses & users 23 The water cycle is important for wetlands 24 Catchments 25 Water quality 27 Invertebrates 29 Wetland soils 30 Did you know that coal formed from swamps? 31 Wetland plants 32 Wetland fish 33 Whitebait-what are they? 34 Wetland birds 35 Food chains & food webs 37 Wetlands - a 'supermarket' for tai poutini maori 39 ACTIVITY SHEETS Activity 1: What is . a wetland? 43 Activity 2: What is . a swamp? 44 Activity 3: What is . an estuary? 45 Activity 4: What is . -
Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists
Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Blank on purpose Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Canada • United States • Mexico www.migratorydragonflypartnership.org © 2014 by The Migratory Dragonfly Partnership The Migratory Dragonfly Partnership uses research, citizen science, education, and outreach to under- stand North American dragonfly migration and promote conservation. MDP steering committee members represent a range of organizations, including: Ontario Ministry of Natural Resources; Peggy Notebaert Nature Museum; Pronatura Veracruz; Rutgers University; Slater Museum of Natural History, University of Puget Sound; Smithsonian Conservation Biology Institute; St. Edward's University; U. S. Forest Service International Programs; U. S. Geological Survey; Vermont Center for Ecostudies; and the Xerces Society for Invertebrate Conservation. Migratory Dragonfly Partnership Project Coordinator, Celeste Mazzacano [email protected] 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.migratorydragonflypartnership.org Acknowledgements Funding for the Migratory Dragonfly Partnership's work is provided by the U.S. Forest Service Inter- national Programs. We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Front and Back Cover Photographs Common Green Darner (Anax junius) male. Photograph © John C. Abbott/Abbott Nature Photography. CONTENTS Summary Page 1 1. Introduction Page 3 1.1 Objectives and Goals Page 3 Box 1: Citizen Science Projects, page 4. 2. Citizen Science Projects Page 5 2.1 Migration Monitoring Page 5 2.1.1 Fall Migration Observations Page 5 - Objectives, page 5. Box 2: MDP Monitoring Projects, page 6. -
André Nel Sixtieth Anniversary Festschrift
Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years. -
The Phylogeny of the Zygopterous Dragonflies As Based on The
THE PHYLOGENY OF THE ZYGOPTEROUS DRAGON- FLIES AS BASED ON THE EVIDENCE OF THE PENES* CLARENCE HAMILTON KENNEDY, Ohio State University. This paper is merely the briefest outline of the writer's discoveries with regard to the inter-relationship of the major groups of the Zygoptera, a full account of which will appear in his thesis on the subject. Three papers1 by the writer discussing the value of this organ in classification of the Odonata have already been published. At the beginning, this study of the Zygoptera was viewed as an undertaking to define the various genera more exactly. The writer in no wise questioned the validity of the Selysian concep- tion that placed the Zygopterous subfamilies in series with the richly veined '' Calopterygines'' as primitive and the Pro- toneurinae as the latest and final reduction of venation. However, following Munz2 for the Agrioninae the writer was able to pick out here and there series of genera where the devel- opment was undoubtedly from a thinly veined wing to one richly veined, i. e., Megalagrion of Hawaii, the Argia series, Leptagrion, etc. These discoveries broke down the prejudice in the writer's mind for the irreversibility of evolution in the reduction of venation in the Odonata orders as a whole. Undoubt- ably in the Zygoptera many instances occur where a richly veined wing is merely the response to the necessity of greater wing area to support a larger body. As the study progressed the writer found almost invariably that generalized or connecting forms were usually sparsely veined as compared to their relatives. -
A Comparative Study of the Chromosomes in the Indian Dragonflies
Title A COMPARATIVE STUDY OF THE CHROMOSOMES IN THE INDIAN DRAGONFLIES Author(s) ASANA, J. J.; MAKINO, Sajiro Citation 北海道帝國大學理學部紀要, 4(2), 67-86 Issue Date 1935-08 Doc URL http://hdl.handle.net/2115/26978 Type bulletin (article) File Information 4(2)_P67-86.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A COMPARATIVE STUDY OF THE CHROMOSOMES 1 IN THE INDIAN DRAGONFLIES ) BY J. J. ASANA Gujarat College, Ahmedabad, India AND Sajiro MAKINO Hokkaido Imperial University, Sapporo, Japan Introduction Barring the pioneer work of OGUMA (,15, '30, '32) and a paper by SMITH (,16) singularly few investigators have devoted their at tention to chromosome studies on this very ancient order of insects, Odonata. In a paper published by OGUMA and ASANA ('32) atten tion was drawn to a very interesting observation, whose significance is not yet quite clear, that the m-chromosome presents every grade of size reduction among testicular cells of a single individual be longing to a species of Odonata, Tramea chinensis, collected in the vicinity of Gujarat College, Ahmedabad, about 300 miles north of Bombay, Western India. This observed fact of size gradation of the m-chromosome in the testicular cells of a single specimen of the dragonfly, T. chinensis, coupled with the fact that one of us happened to be transferred on duty to a place farther south, nearer Bombay, to a locality richer in dragonfly fauna, acted as a stimulus for collecting additional material for further investigation. However, it must at once be admitted that the account presented in this paper throws little light, if any, on the bearing of this remarkable fact, upon the taxonomic studies 1) Contribution No. -
A Decrease in Endemic Odonates in the Ogasawara Islands, Japan
「森林総合研究所研究報告」(Bulletin of FFPRI), Vol.4, No.1 (No.394), 45 - 51, Mar. 2005 論 文(Original article) A decrease in endemic odonates in the Ogasawara Islands, Japan YOSHIMURA Mayumi 1)* and OKOCHI Isamu 2) Abstract There are many endemic species in the Japanese Ogasawara Islands. However, many of these endemic species are likely to disappear as a result of reduction of habitat and the introduction of exotic species. Odonates are included within this category of species at risk. If the decrease in endemic odonates is due to a decrease in aquatic habitat, we have only to provide arti” fi cial ponds to conserve these species. In this study, we provided artifi cial ponds as a habitat for odonates in Chichi-jima and Ani-jima, Ogasawara Islands. We then examined the possibility of protection and enhancement of odonate populations. Endemic odonates were found in the natural ponds of Ani-jima and Ototo-jima. In Ani-jima, they could be collected both in the artifi cial and natural ponds. The artifi cial pond could provide habitat for endemic odonates. However, in Chichi-jima, few odonates could be collected both in the artifi cial and natural ponds. Here, invasive species, such as Gambusia affi nis and Anolis carolinensis, are found, which considered to prey upon odonate larvae and adults. Extermination of invasive species may be necessary to conserve the endemic odonates in Chichi-jima. Key words : Anolis carolinensis, endemic species, oceanic islands, odonates, Ogasawara Islands, predator, conservation Introduction in Chichi-jima. In Japan, the Ogasawara Islands consist of many This decline has been blamed on environmental small islands, including Chichi-jima, Ani-jima, Ototo- destruction. -
The Major Genetic Features of the Order Odonata Are Well Known (Cf
Odonalologica 9(1): 29 JJ March /. 1980 The karyotypes of five species of Odonataendemic to New Zealand A.L. Jensen¹ Zoology Department, University of Canterbury, Christchurch-I, New Zealand Received April 10, 1979 The chromosome = 4 formula, n <5 13 (X. hi), characterises spp.: Austrolestes colensonis (White) (Lestidae), Uropetala carovei (White) (Petaluridae), Procordulia grayi (Sel.) and P. smithii (White) (Corduliidae). The karyotype of is 14 Xanthomemis zelandica (McLach.) (Coenagrionidae) described by n <J= (X). Save U. carovei of these have been far. for none spp. examined cytologically so INTRODUCTION The major genetic features of the Order Odonata are well known (cf. for example KIAUTA, 1972). The karyotypes ofalmost 500 species, representing 20 of the 27 existent families, have been determined. However, most of these records refer to Northern Hemisphere species and little cytological information is available from Australasia. Cytological studies of the many endemic species occurring in both Australia and New Zealand will therefore aid the development of a complete cytophylogenetic picture of the Order, and may also help to indicatethe relationships ofthesespecies with the world fauna. Of the II Odonata species present in New Zealand, six are endemic. of five endemic in Karyotypes the species known to occur Mid Canterbury, South Island (cf. CROSBY, DUGDALE& WATT, 1976)are presented here. MATERIAL AND METHODS and males collected Isaac's Pond Larval, teneral, mature were from (43°28’S. 172° 32'E)and/ or 0 Lake Sarah (43°03'S. 171 47’E). The testes were removed and fixed in 3; I absolutealcohohglacial 1 Present address: c o K. Andersen, Ludvig Jensensvej 3. -
The Role of Landmarks in Territory
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 2014 The Role of Landmarks in Territory Maintenance by the Black Saddlebags Dragonfly, Tramea lacerata Jeffrey Lojewski Eastern Illinois University This research is a product of the graduate program in Biological Sciences at Eastern Illinois University. Find out more about the program. Recommended Citation Lojewski, Jeffrey, "The Role of Landmarks in Territory Maintenance by the Black Saddlebags Dragonfly, Tramea lacerata" (2014). Masters Theses. 1305. https://thekeep.eiu.edu/theses/1305 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. Thesis Reproduction Certificate Page 1of1 THESIS MAINTENANCE AND REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses An important part of Booth Library at Eastern Illinois University's ongoing mission is to preserve and provide access to works of scholarship. In order to further this goal, Booth Library makes all theses produced at Eastern Illinois University available for personal study, research, and other not-for-profit educational purposes. Under 17 U.S.C. § 108, the library may reproduce and distribute a copy without infringing on copyright; however, professional courtesy dictates that permission be requested from the author before doing so. By signing this form: • You confirm your authorship of the thesis. • You retain the copyright and intellectual property rights associated with the original research, creative activity, and intellectual or artistic content of the thesis .