Tympanometry for Hearing Screening
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Urgent ENT Problems APRIL 4, 2019 GERARD MACDONALD MD FRCS
3/21/2019 Common Urgent ENT Problems APRIL 4, 2019 GERARD MACDONALD MD FRCS 1 Course Objectives A review of common Urgent ENT problems presenting to office and ER Clinical Pearls to help you manage in a timely fashion Knowing when to refer 2 1 3/21/2019 I do not have any Conflicts of Interest 3 Top Ten List Of Urgent Calls 1.Acute Otitis Externa 2. Sudden Hearing Loss 3.Facial Palsy 4.Salivary Gland Stone /Infection 5.Peritonsillar Abscess 6.Neck Abscess 7.Nosebleeds 8.Hoarseness 9.Foreign Bodies Ear/Nose 10. Acute Vertigo 4 2 3/21/2019 Acute Otitis Externa Commonly associated with swimming ( swimmer’s ear) Common in diabetics and habitual Q-tip Users Usual presenting symptoms are itching, discharge, pain and swelling. More severe symptoms can include severe pain, parotid swelling,trismus and cellulitiis Most common organism is Pseudomonas Aeruginosa May go on to develop secondary otomycosis if frequent use of topical antibiotics. Malignant External Otitis rare but serious 5 Acute Otitis Externa 6 3 3/21/2019 Acute Otitis Externa - Treatment Debridement/Suctioning ? Culture Avoid syringing Ototopicals : Tobradex, Sofracort, Ciprodex Otowick if canal swollen shut Oral Antibiotic ( Cipro ) and single dose Steroid if severe When to refer : Unrelenting pain and swelling, facial nerve weakness,dysphagia , fever 7 Sudden hearing Loss UNEXPLAINED sudden sensorineural hearing loss occurring over 3 days Not AOM, trauma, acoustic trauma , ototoxicity Often confused with ETD , “fluid” Poorer outcome if not recognized -
Hearing Thresholds, Tinnitus, and Headphone Listening Habits in Nine-Year-Old Children
International Journal of Audiology ISSN: 1499-2027 (Print) 1708-8186 (Online) Journal homepage: http://www.tandfonline.com/loi/iija20 Hearing thresholds, tinnitus, and headphone listening habits in nine-year-old children Sara Båsjö, Claes Möller, Stephen Widén, Göran Jutengren & Kim Kähäri To cite this article: Sara Båsjö, Claes Möller, Stephen Widén, Göran Jutengren & Kim Kähäri (2016) Hearing thresholds, tinnitus, and headphone listening habits in nine-year-old children, International Journal of Audiology, 55:10, 587-596, DOI: 10.1080/14992027.2016.1190871 To link to this article: http://dx.doi.org/10.1080/14992027.2016.1190871 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 22 Jun 2016. Submit your article to this journal Article views: 456 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iija20 Download by: [Linköping University Library] Date: 07 November 2016, At: 05:25 International Journal of Audiology 2016; 55: 587–596 Original Article Hearing thresholds, tinnitus, and headphone listening habits in nine-year-old children Sara Ba˚sjo¨1,2, Claes Mo¨ller1, Stephen Wide´n1,Go¨ran Jutengren3 & Kim Ka¨ha¨ri4 1Audiological Research Centre, School of Health and Medical Sciences / Swedish Institute for Disability Research, O¨ rebro University Hospital, O¨ rebro University, O¨ rebro, Sweden, 2HEAD Graduate School, Linko¨ping University, Linko¨ping, Sweden, 3School of Health Sciences, University of Bora˚s, Bora˚s, Sweden, and 4Division of Audiology, Sahlgrens’ Academy at Go¨teborg University, Go¨teborg, Sweden ABSTRACT Objective: Investigate hearing function and headphone listening habits in nine-year-old Swedish children. -
Introduction to Tympanometry
Tympanometry – Quick Guide Page 1 of 6 Introduction to Tympanometry This is an introduction to understanding and reporting on tympanometry measurements. This guide should be used in conjunction with your own clinic’s protocols and current research in the area of acoustic immittance testing. Some Useful Terminology Ear Canal Volume “The equivalent ear canal volume (ECV) is an estimate of the volume of air medial to the probe, which includes the volume between the probe tip and the tympanic membrane if the tympanic membrane is intact, or the volume of the ear canal and the middle ear space if the tympanic membrane is perforated” (Fowler & Shanks, 2002, p. 180). Averages Children 3 – 5yrs: 0.4cc to 1.0cc Adults: 0.6cc to 1.5cc Ear canal volume with an ECV >2.0 with a type B tympanogram in children suggests a perforated TM or patent grommet. Very small ECV with a type B tympanogram suggested impacted wax or middle ear pathology (glue ear?). Tympanometric Peak Pressure/Middle Ear Pressure Tympanometric peak pressure (TTP) or middle ear pressure (MEP) is the ear canal pressure at which the peak of the tympanogram occurs (Margolis & Hunter, 2000). Static Compliance Static compliance (SC) “is the greatest amount of acoustic energy absorbed by the middle ear system (the vertical peak of the tympanic tracing)” (Onusko, 2004, p. 1716). Gradient “Tympanogram gradient is an objective measure that describes the steepness of the slope of the tympanogram near the peak” (Fowler & Shanks, 2002, p.182). The gradient is not commonly used in Australia to analyse -
Acoustic Trauma and Hyperbaric Oxygen Treatment
Acoustic Trauma and Hyperbaric Oxygen Treatment Mesut MUTLUOGLU Department of Underwater and Hyperbaric Medicine Gulhane Military Medical Academy Haydarpasa Teaching Hospital 34668, Uskudar, Istanbul TURKEY [email protected] ABSTRACT As stated in the conclusions of the HFM-192 report on hyperbaric oxygen therapy (HBOT) in military medical setting, acoustic trauma is a frequent consequence of military activity in operation. Acoustic trauma refers to an acute hearing loss following a single sudden and very intense noise exposure. It differs from chronic noise induced hearing (NIHL) loss in that it is usually unilateral and causes sudden profound hearing loss. Acoustic trauma is a type of sensorineural hearing loss affecting inner ear structures; particularly the inner and outer hair cells of the organ of Corti within the cochlea. Exposure to noise levels above 85 decibel (dB) may cause hearing loss. While long-term exposure to repetitive or continuous noise above 85 dB may cause chronic NIHL, a single exposure above 130-140 dB, as observed in acoustic trauma, may cause acute NIHL. The loudest sound a human ear may tolerate without pain varies individually, but is usually around 120dB. Military personnel are especially at increased risk for acoustic trauma due to fire arm use in the battle zone. While a machine gun generates around 145dB sound, a rifle generates 157- 163dB, a 105 mm towed howitzer 183dB and an improvised explosive device around 180dB sound. Acoustic trauma displays a gradually down-slopping pattern in the audiogram, particularly after 3000Hz and is therefore described as high-frequency hearing loss. Tinnitus is almost always associated with acoustic trauma. -
ICD-9 Diseases of the Ear and Mastoid Process 380-389
DISEASES OF THE EAR AND MASTOID PROCESS (380-389) 380 Disorders of external ear 380.0 Perichondritis of pinna Perichondritis of auricle 380.00 Perichondritis of pinna, unspecified 380.01 Acute perichondritis of pinna 380.02 Chronic perichondritis of pinna 380.1 Infective otitis externa 380.10 Infective otitis externa, unspecified Otitis externa (acute): NOS circumscribed diffuse hemorrhagica infective NOS 380.11 Acute infection of pinna Excludes: furuncular otitis externa (680.0) 380.12 Acute swimmers' ear Beach ear Tank ear 380.13 Other acute infections of external ear Code first underlying disease, as: erysipelas (035) impetigo (684) seborrheic dermatitis (690.10-690.18) Excludes: herpes simplex (054.73) herpes zoster (053.71) 380.14 Malignant otitis externa 380.15 Chronic mycotic otitis externa Code first underlying disease, as: aspergillosis (117.3) otomycosis NOS (111.9) Excludes: candidal otitis externa (112.82) 380.16 Other chronic infective otitis externa Chronic infective otitis externa NOS 380.2 Other otitis externa 380.21 Cholesteatoma of external ear Keratosis obturans of external ear (canal) Excludes: cholesteatoma NOS (385.30-385.35) postmastoidectomy (383.32) 380.22 Other acute otitis externa Excerpted from “Dtab04.RTF” downloaded from website regarding ICD-9-CM 1 of 11 Acute otitis externa: actinic chemical contact eczematoid reactive 380.23 Other chronic otitis externa Chronic otitis externa NOS 380.3 Noninfectious disorders of pinna 380.30 Disorder of pinna, unspecified 380.31 Hematoma of auricle or pinna 380.32 Acquired -
Sports Injuries
Sports Injuries Of the Ear G.A.WAGNER,MD SUMMARY The author describes common sports injuries involving the ear. Such injuries include hematoma, lacerations, foreign bodies (tattoo), and thermal injuries. Ear canal injuries include swimmer's ear and penetrating injuries. Tympanum injuries include tympanic membrane perforations, ossicular discontinuity, eustachian tube dysfunction, temporal bone fractures and traumatic facial nerve palsy. Inner ear injuries include traumatic sensorineural deafness. The author emphasizes the management of these injuries. Dr. Wagner, an otolaryngologist, is on the active staff of three Calgary hospitals. SPORTS INJURIES to the ear are as variable as the frostbite. These are usually found in skiers, skaters, and activities which cause them - they may involve the mountain climbers. Severe, deep frostbite injuries of the auricle, external auditory canal, tympanum, and inner ear, auricle are best treated by rapid rewarming with water- but only rarely involve the eighth cranial nerve or central soaked pledgets maintained at between 38 and 42 degrees auditory pathways. centigrade. Freezing, thawing, and re-freezing must be avoided since this is extremely injurious to tissue.2 Surgical Auricle debridement may occasionally be required but is generally Auricle injuries are common, as there is a human reflex prohibited for several months as the auricle has an amazing tendency to turn the head to the side when expecting capacity for self repair. frontal head trauma. The auricle is thereby involved even though the impact may have been from a head-on External Auditory Canal direction.' Lacerations in the ear canal, if minor, may be treated The so-called 'cauliflower ear' often seen in retired with an antibiotic-steroid eardrop solution in order to boxers or wrestlers is caused by untreated - or repeated - minimize crusting, maximize clot dissolution and cleansing hematomas of the auricle. -
Radiographic Mastoid and Middle Ear Effusions in Intensive Care Unit Subjects
Radiographic Mastoid and Middle Ear Effusions in Intensive Care Unit Subjects Phillip Huyett MD, Yael Raz MD, Barry E Hirsch MD, and Andrew A McCall MD BACKGROUND: This study was conducted to determine the incidence of and risk factors associ- ated with the development of radiographic mastoid and middle ear effusions (ME/MEE) in ICU patients. METHODS: Head computed tomography or magnetic resonance images of 300 subjects admitted to the University of Pittsburgh Medical Center neurologic ICU from April 2013 through April 2014 were retrospectively reviewed. Images were reviewed for absent, partial, or complete opacification of the mastoid air cells and middle ear space. Exclusion criteria were temporal bone or facial fractures, transmastoid surgery, prior sinus or skull base surgery, history of sinonasal malignancy, ICU admission < 3 days or inadequate imaging. RESULTS: At the time of admission, of subjects subsequently (31 ؍ of subjects had radiographic evidence of ME/MEE; 10.3% (n 3.7% developed new or worsening ME/MEE during their ICU stay. ME/MEE was a late finding and was found to be most prevalent in subjects with a prolonged stay (P < .001). Variables associated with ME/MEE included younger age, the use of antibiotics, and development of radiographic sinus opacification. The proportion of subjects with ME/MEE was significantly higher in the presence of an endotracheal tube (22.7% vs 0.6%, P < .001) or a nasogastric tube (21.4% vs 0.6%, P < .001). CONCLUSIONS: Radiographic ME/MEE was identified in 10.3% of ICU subjects and should be considered especially in patients with prolonged stay, presence of an endotracheal tube or naso- gastric tube, and concomitant sinusitis. -
EXAMINATION of PATIENTS with ACUTE ACOUSTIC TRAUMA Umar B
EXAMINATION OF PATIENTS WITH ACUTE ACOUSTIC TRAUMA Umar B. Bobodzhanov, Jamol I. Kholmatov, Ravshan U. Bobodzhonov Department of Otorhinolaryngology of the Tajik Medical University of the name Abuali ibni Sino Corresponding author: Jamal I. Kholmatov, Department of Otorhinolaryngology of the Tajik Medical University of the name Abuali ibni Sino, e-mail: [email protected] Abstract The acute acoustic trauma leads to further injuries of various structures of the middle and inner ear. Complex audiological examination of hearing in order to reveal posttraumatic sensorineural hearing loss and timely rehabilitation is required to re- veal injuries. It is especially necessary in case of suspicion of integrity damage of labyrinthine windows. In order to evaluate posttraumatic hearing loss, we consider complete audiological examination, including audiomentry in the expanded range of frequencies of air-conduction and bone-conduction, and also urgent rehabilitation actions necessary. Background All patients with ear trauma reported decrease of hear- ing and tinnitus in the ears which was perceptible from According to different authors ear traumas make 32–70% the moment of trauma. The majority of patients suffered of all injuries both in war and a peace times. Decrease of from abrupt hearing loss. the tinnitus was of various in- their number is hard to estimate in the near future be- tensity and character. cause of constant development of manufacture, increase of speed, instability of living standards and growth of house- Other implications of diseases were noted, such as pain hold violence [1,3,6–8]. and feeling of heaviness in the injured ear. 98 (32.7%) pa- tients noted a short-term loss of consciousness immediate- Occurring diagnostic difficulties, especially in cases of ly after trauma, later on they experienced dizziness, nausea polytrauma of various ear structures and posttraumat- and vomiting. -
Audiometric Test Procedures
Audiometric Test Procedures 101 This information is meant to help you better understand the various test procedures as well as some of the terms you might see on an audiometric report. By Larry Medwetsky individual could, in fact, exhibit nor- In the previous issue of Hearing mal hearing acuity across these three Loss Magazine, I provided an over- Anyone who has ever had their frequencies, yet, exhibit a significant view concerning hearing threshold hearing tested should know how hearing loss in the higher frequencies results as recorded on the audiogram to read the audiogram, but that’s (3000-8000 Hz). Thus, it is important and an explanation of the pure-tone easier said than done. Hopefully, to examine the SRT in the context of audiogram. In this article, I will after reading this article you will the other audiometric test findings. describe various test procedures have a greater understanding of the Speech Awareness Threshold that are typically administered in principles discussed and use your (SAT): an audiometric evaluation and what knowledge going forward—be it in Compound words are pre- information the tests provide. reviewing hearing test results you sented, the goal being to determine already have or when discussing your the softest level one can detect the Audiometric Test Procedures results at your next hearing test. presence of words. This test is often Pure-tone Audiometry: Tones of used when an individual’s hearing loss different frequencies are presented; the is so great that the person is unable goal is to find the softest sound level relatively flat hearing losses, and the to recognize/repeat the words, yet is which one can hear (threshold) the average of 500 and 1000 Hz for those aware that words have been presented. -
A Transneuronal Analysis of the Olivocochlear and the Middle Ear Muscle Reflex Pathways
$WUDQVQHXURQDODQDO\VLVRIWKH ROLYRFRFKOHDUDQGWKHPLGGOHHDU PXVFOHUHIOH[SDWKZD\V 6XGHHS0XNHUML Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen Dissertation date: “There is nothing noble in being superior to your fellow man; true nobility is being superior to your former self.” -Ernest Hemmingway CONTENTS ________________________________________________________________________ 1. Acknowledgements……………………………………………………………..............4 2. Scientific Environment………………………………………………………................6 3. Abstract…………………………………………………………………………………7 4. List of publications……………………………………………………………............10 5. Abbreviations………………………………………………………………….............11 6. Introduction 6.1 Middle ear muscles………………………………………………............13 6.2 Middle ear muscle function……………………………………...............15 6.3 Middle ear muscle reflex…………………………………………...........17 6.4 The descending limb: motoneurons……………………………………...20 6.5 Synapses………………………………………………………………….24 6.6 Clinical applications………………………………...................................28 6.7 Clinical syndromes……………………………………………………….30 6.7 Olivocochlear reflex pathway……………………………………............32 6.8 Reflex interneurons………………………………………………............34 6.9 Transneuronal labeling of reflex pathways………………………............36 7. Study aims…………………………………………………………………….............43 8. Methodology…………………………………………………………….....................45 9. Summary of results 9.1 Study 1. Nature of labeled components of the tensor tympani muscle reflex pathway and possible non-auditory neuronal inputs……………………...49 -
Characterization of Acoustic Reflex Latency in Females
Global Journal of Otolaryngology ISSN 2474-7556 Research Article Glob J Otolaryngol - Volume 11 Issue 2 October 2017 Copyright © All rights are reserved by Reena Narayanan DOI: 10.19080/GJO.2017.11.555808 Characterization of Acoustic Reflex Latency in Females Reena Narayanan* Master in Clinical Audiology & Hearing Therapy, School of Advanced Education Research and Accreditation, University Isabel l, Spain Submission: October 05, 2017; Published: October 16, 2017 *Corresponding author: : Reena Narayanan, University Isabel l, Spain, Tel: ; Email: Abstract Unlike pure tone audiogram, the usual procedure to detect middle ear disorders and conductive hearing loss, ARL can differentiate between cochlearAcoustic andReflex retrocochlear Latency (ARL) pathologies, is the time yields interval information between about onset the of naturean intense of the auditory conductive stimulus disorder, and canonset detect of middle-ear mild conductive muscle problems contraction. and is useful for patients that require cooperation. The present study done on 30 normal-hearing female subjects between the age range of 20-30 latencyyears old of shows other frequencies.no significant The differences present study between might the be results used as in normativethe left and data right for ears future of the research subjects on using ARL in the patients Acoustic with Reflex various Threshold cochlear (ART) and retrocochlearlatency parameters lesions tested as part from of a 500 differential Hz to 4,000 diagnosis. Hz and the Interaural Latency Difference (ILD) for initial latency of 500 Hz with ILD for initial Abbreviations: BBN: Broad Band Noise ARL: Acoustic Reflex Latency; ART: Acoustic Reflex Threshold; ILD: Interaural Latency Difference; TM: Tympanic Membrane; Introduction includes the vestibular system and the cochlea. -
Chapter 9 Hearing Loss
Chapter 9 Hearing loss 9.1 Estimation of noise induced hearing loss on the basis of the record of past noise exposure Noise-induced hearing loss is considered to become a detectable per- manent hearing loss through the repetition of temporary hearing loss and its recovery that starts an undetectable infinitesimal permanent hearing loss and its accumulation. The past noise exposure during the Vietnam War era was estimated in the previous section using measurements recorded at the residential areas in the vicinity of Kadena airfield in 1968 and 1972. The estimated WECPNL was around 105, and the equivalent continuous sound pressure level, LAeq, for averaging time of 24 hours came to 83 dB. These values are serious when com- pared with the permissible criteria of occupational noise exposure for hearing conservation recommended by Japan Society for Occupational Health which is 80 dB for 24 working hours a day. The criteria is provided in the expectation that average hearing loss can be controlled after prolonged exposure of over years under 20 dB for the test frequency of 4 kHz. 9.1.1 Estimation of TTS due to aircraft noise A method of computation of average temporary threshold shift (TTS) (Takagi K, Hiramatsu K & Yamamoto T; 1988) is available if the temporal and spectral features of noise exposure are given; in its turn, permanent aver- age hearing loss can be estimated to a certain extent from past measurement of noise exposure. The method consists of two stages. One is the critical band theory with respect to TTS, which deals with the spectral aspect of the exposure noise.